How Not to Instantiate the (Module)-Quadratic Form Equivalence Problem **CHARM Workshop**

Henry Bambury ^{1,2}, Phong Nguyen ¹

¹DIENS, Inria Team CASCADE ²DGA

Tuesday, June 17th, 2025

Outline

I. Intro: (Module)-Quadratic Form Equivalence?

II. The DEFI signature scheme by Feussner and Semaev

III. A key-recovery attack on DEFI

A recent problem in lattice crypto [DvW22,BGPS23]

A recent problem in lattice crypto [DvW22,BGPS23]

A recent problem in lattice crypto [DvW22,BGPS23]

(search)-Lattice Isomorphism Problem: LIP

Given two lattices $\Lambda_1, \Lambda_2 \subset \mathbb{R}^n$ such that there exists $O \in \mathcal{O}_n(\mathbb{R})$ for which $\Lambda_1 = O \cdot \Lambda_2$, recover a O (up to automorphism).

Lattice Isomorphism Problem

 Λ is *integral* if $\langle \mathbf{x}, \mathbf{y} \rangle \in \mathbb{Z}$ for all $\mathbf{x}, \mathbf{y} \in \Lambda$. In particular if \mathbf{B} is a basis of Λ , $\mathbf{B}^T \mathbf{B} \in S_n(\mathbb{Z})$.

Lattice Isomorphism Problem

 Λ is *integral* if $\langle \mathbf{x}, \mathbf{y} \rangle \in \mathbb{Z}$ for all $\mathbf{x}, \mathbf{y} \in \Lambda$. In particular if \mathbf{B} is a basis of Λ , $\mathbf{B}^T \mathbf{B} \in S_n(\mathbb{Z})$.

LIP: Gram Matrix version

Let $\mathbf{Q} \in S_n(\mathbb{Z})$ be a positive definite quadratic form. Given $\mathbf{Q}' \in S_n(\mathbb{Z})$ another positive definite quadratic form, find $\mathbf{U} \in GL_n(\mathbb{Z})$ such that

$$\mathbf{Q}' = \mathbf{U}^T \mathbf{Q} \mathbf{U},$$

assuming such a ${f U}$ exists.

Quadratic Forms: Terminology

ightharpoonup Over \mathbb{R} :

$$\mathbf{x} \mapsto \mathbf{x}^T \mathbf{Q} \mathbf{x}$$

where $\mathbf{x} \in \mathbb{R}^n$ and \mathbf{Q} is symmetric.

Quadratic Forms: Terminology

ightharpoonup Over \mathbb{R} :

$$\mathbf{x} \mapsto \mathbf{x}^T \mathbf{Q} \mathbf{x}$$

where $\mathbf{x} \in \mathbb{R}^n$ and \mathbf{Q} is symmetric.

► Over C:

$$\mathbf{z}\mapsto\overline{\mathbf{z}^T}\mathbf{H}\mathbf{z},$$

where $\mathbf{z} \in \mathbb{C}^n$ and \mathbf{H} is **Hermitian**.

Quadratic Forms: Terminology

ightharpoonup Over \mathbb{R} :

$$\mathbf{x} \mapsto \mathbf{x}^T \mathbf{Q} \mathbf{x}$$

where $\mathbf{x} \in \mathbb{R}^n$ and \mathbf{Q} is symmetric.

ightharpoonup Over \mathbb{C} :

$$\mathbf{z} \mapsto \overline{\mathbf{z}^T} \mathbf{H} \mathbf{z},$$

where $\mathbf{z} \in \mathbb{C}^n$ and \mathbf{H} is **Hermitian**.

- ▶ **Q** can be **positive definite** if $\mathbf{x}^T \mathbf{Q} \mathbf{x} > 0$ for $\mathbf{x} \neq \mathbf{0}$.
- ▶ If the sign of $\mathbf{x}^T \mathbf{Q} \mathbf{x}$ changes, we say \mathbf{Q} is **indefinite**.
- ▶ A vector $\mathbf{x} \neq \mathbf{0}$ such that $\mathbf{x}^T \mathbf{Q} \mathbf{x} = 0$ is called **isotropic**.

Quadratic Forms: Equivalence

Equivalence of forms - unstructured

Quadratic forms $\mathbf{Q},\mathbf{Q}'\in S_n(\mathbb{Z})$ are \mathbb{Z} -equivalent if there exists $\mathbf{U}\in \mathrm{GL}_n(\mathbb{Z})$ such that

$$\mathbf{Q}' = \mathbf{U}^T \mathbf{Q} \mathbf{U}.$$

Quadratic Forms: Equivalence

Equivalence of forms - unstructured

Quadratic forms $\mathbf{Q},\mathbf{Q}'\in S_n(\mathbb{Z})$ are \mathbb{Z} -equivalent if there exists $\mathbf{U}\in \mathrm{GL}_n(\mathbb{Z})$ such that

$$\mathbf{Q}' = \mathbf{U}^T \mathbf{Q} \mathbf{U}.$$

More generally, let $\mathbb{Z} \subseteq R \subset \mathbb{C}$ be a ring.

Equivalence of forms - structured

Hermitian forms $\mathbf{H}, \mathbf{H}' \in H_r(R)$ are R-equivalent if there exists $\mathbf{U} \in GL_r(R)$ such that

$$H' = \overline{U}^T H U.$$

LIP

Examples

► HAWK uses $\mathbf{H} = \mathsf{Diag}(1,1) \in R^{2 \times 2}$: Given $\mathbf{H}' \in R^{2 \times 2}$ R-equivalent to \mathbf{H} , find $\mathbf{B} \in \mathsf{GL}_2(R)$ such that $\mathbf{H}' = \overline{\mathbf{B}}^T \mathbf{B}$.

Examples

- ► HAWK uses $\mathbf{H} = \text{Diag}(1,1) \in R^{2\times 2}$: Given $\mathbf{H}' \in R^{2\times 2}$ R-equivalent to \mathbf{H} , find $\mathbf{B} \in \text{GL}_2(R)$ such that $\mathbf{H}' = \overline{\mathbf{B}}^T \mathbf{B}$.
- ▶ DEFI uses $\mathbf{J} = \text{Diag}(1, 1, -1, -1) \in R^{4 \times 4}$. Given $\mathbf{C} \in R^{4 \times 4}$ R-equivalent to \mathbf{J} , find $\mathbf{B} \in \text{GL}_4(R)$ such that $\mathbf{C} = \mathbf{B}^T \mathbf{J} \mathbf{B}$.

Examples

- ► HAWK uses $\mathbf{H} = \mathsf{Diag}(1,1) \in R^{2 \times 2}$: Given $\mathbf{H}' \in R^{2 \times 2}$ R-equivalent to \mathbf{H} , find $\mathbf{B} \in \mathsf{GL}_2(R)$ such that $\mathbf{H}' = \overline{\mathbf{B}}^T \mathbf{B}$.
- ▶ DEFI uses $\mathbf{J} = \text{Diag}(1, 1, -1, -1) \in R^{4 \times 4}$. Given $\mathbf{C} \in R^{4 \times 4}$ R-equivalent to \mathbf{J} , find $\mathbf{B} \in \text{GL}_4(R)$ such that $\mathbf{C} = \mathbf{B}^T \mathbf{J} \mathbf{B}$.

In both cases, $R = \mathbb{Z}[X]/(X^{2^k} + 1)$ is used in practice.

LIP with Gram Matrices

 $\mathbf{Q}=$ positive definite quadratic form $\in R^{r \times r}$. Given \mathbf{Q}' equivalent to \mathbf{Q} , find $\mathbf{U}\in \mathrm{GL}_r(R)$ such that

$$\mathbf{Q}' = \overline{\mathbf{U}}^T \mathbf{Q} \mathbf{U}.$$

New! Quadratic Form Equivalence

 ${f J}={
m positive}$ definite indefinite quadratic form $\in R^{r\times r}$. Given ${f C}$ equivalent to ${f J}$, find ${f B}\in {
m GL}_r(R)$ such that

$$C = B^T J B$$
.

(Polynomial Ring) MQ¹ Problem

Given (c_{ij}) , solve

$$\begin{cases} c_{11} &= b_{11}^2 + b_{12}^2 - b_{13}^2 - b_{14}^2 \\ c_{22} &= b_{21}^2 + b_{22}^2 - b_{23}^2 - b_{24}^2 \\ c_{33} &= b_{31}^2 + b_{32}^2 - b_{33}^2 - b_{34}^2 , \\ c_{44} &= b_{41}^2 + b_{42}^2 - b_{43}^2 - b_{44}^2 \\ &\vdots \end{cases}$$

where

$$b_{ij},c_{ij}\in R=\mathbb{Z}[X]/(X^{2^k}+1).$$

¹MQ = Multivariate Quadratic.

¹MQ = Multivariate Quadratic.

¹MQ = Multivariate Quadratic.

 ${}^{1}MQ = Multivariate Quadratic.$

¹MQ = Multivariate Quadratic.

Outline

I. Intro: (Module)-Quadratic Form Equivalence?

II. The DEFI signature scheme by Feussner and Semaev

III. A key-recovery attack on DEFI

$$\blacktriangleright R = \mathbb{Z}[X]/(X^{64}+1)$$

$$ightharpoonup \mathbf{J} = \mathsf{Diag}(1,1,-1,-1) \in R^{4 imes 4}$$

KeyGen

- ▶ The Private key is a small $\mathbf{B} = \begin{pmatrix} 1 & \mathbf{0}_{1\times 3} \\ \mathbf{B}_{21} & \mathbf{B}_{22} \end{pmatrix} \in \mathsf{SL}_4(R)$.
- ▶ The Public key is $\mathbf{C} := \mathbf{B}^T \mathbf{J} \mathbf{B}$.

$\mathsf{Sign}(\mu,\mathsf{B})$

- ▶ Complete $H(\mu)$ into an **isotropic** z (i.e. $z^T Jz = 0$).
- ► Return $\mathbf{y} := \mathbf{B}^{-1}\mathbf{z}$.

$\overline{\mathsf{Verif}(\mathsf{y},\mu,\mathsf{C})}$

► Accept iff $H(\mu) = \mathbf{e}_1^T \mathbf{y}$ and $\mathbf{y}^T \mathbf{C} \mathbf{y} = 0$.

$$\blacktriangleright R = \mathbb{Z}[X]/(X^{64}+1)$$

▶ **J** = Diag
$$(1, 1, -1, -1) \in R^{4 \times 4}$$

KeyGen

- ▶ The Private key is a small $\mathbf{B} = \begin{pmatrix} 1 & \mathbf{0}_{1\times 3} \\ \mathbf{B}_{21} & \mathbf{B}_{22} \end{pmatrix} \in \mathsf{SL}_4(R)$.
- ▶ The Public key is $\mathbf{C} := \mathbf{B}^T \mathbf{J} \mathbf{B}$.

$\mathsf{Sign}(\mu,\mathsf{B})$

- ▶ Complete $H(\mu)$ into an isotropic z (i.e. $z^TJz = 0$). ← Trapdoor operation
- ► Return $\mathbf{y} := \mathbf{B}^{-1}\mathbf{z}$.

$\mathsf{Verif}(\mathsf{y},\mu,\mathsf{C})$

► Accept iff $H(\mu) = \mathbf{e}_1^T \mathbf{y}$ and $\mathbf{y}^T \mathbf{C} \mathbf{y} = 0$.

$$\blacktriangleright R = \mathbb{Z}[X]/(X^{64}+1)$$

▶ **J** = Diag
$$(1, 1, -1, -1) \in R^{4 \times 4}$$

KeyGen

- ▶ The Private key is a small $\mathbf{B} = \begin{pmatrix} 1 & \mathbf{0}_{1\times 3} \\ \mathbf{B}_{21} & \mathbf{B}_{22} \end{pmatrix} \in \mathsf{SL}_4(R)$.
- ▶ The Public key is $\mathbf{C} := \mathbf{B}^T \mathbf{J} \mathbf{B}$.

$\mathsf{Sign}(\mu,\mathsf{B})$

- ▶ Complete $H(\mu)$ into an isotropic z (i.e. $z^TJz = 0$). ← Trapdoor operation
- ► Return $\mathbf{y} := \mathbf{B}^{-1}\mathbf{z}$. \leftarrow Obfuscation step

$\overline{\mathsf{Verif}(\mathsf{y},\mu,\mathsf{C})}$

► Accept iff $H(\mu) = \mathbf{e}_1^T \mathbf{y}$ and $\mathbf{y}^T \mathbf{C} \mathbf{y} = 0$.

$$\triangleright R = \mathbb{Z}[X]/(X^{64}+1)$$

▶ **J** = Diag
$$(1, 1, -1, -1) \in R^{4 \times 4}$$

KeyGen

- ▶ The Private key is a small $\mathbf{B} = \begin{pmatrix} 1 & \mathbf{0}_{1\times 3} \\ \mathbf{B}_{21} & \mathbf{B}_{22} \end{pmatrix} \in \mathsf{SL}_4(R)$.
- ▶ The Public key is $\mathbf{C} := \mathbf{B}^T \mathbf{J} \mathbf{B}$.

$\mathsf{Sign}(\mu,\mathsf{B})$

- ► Complete $H(\mu)$ into an isotropic z (i.e. $z^T Jz = 0$).
- ► Return $\mathbf{y} := \mathbf{B}^{-1}\mathbf{z}$.

$\textbf{Verif(y}, \mu, \textbf{C)}$

► Accept iff $H(\mu) = \mathbf{e}_1^T \mathbf{y}$ and $\mathbf{y}^T \mathbf{C} \mathbf{y} = 0$.

Correctness:

$$\begin{aligned} \mathbf{y}^T \mathbf{C} \mathbf{y} &= \mathbf{y}^T (\mathbf{B}^T \mathbf{J} \mathbf{B}) \mathbf{y} \\ &= (\mathbf{B} \mathbf{y})^T \mathbf{J} (\mathbf{B} \mathbf{y}) \\ &= \mathbf{z}^T \mathbf{J} \mathbf{z} = 0. \end{aligned}$$

The DEFI Trapdoor operation

$\mathsf{Sign} \big(\mu, \mathsf{B} \big)$

- ▶ Complete $H(\mu)$ into an isotropic z (i.e. $z^TJz = 0$). ← Trapdoor operation
- ► Return $y := B^{-1}z$. \leftarrow Obfuscation step

Trapdoor($h := H(\mu)$ **)**

- ▶ Generate small polynomials $u, v \leftarrow R$.
- ► Return

$$\mathbf{z} := \begin{pmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{pmatrix} = \begin{pmatrix} h \\ v + u^2v - hv \\ v - u^2v + hv \\ 2uv - h \end{pmatrix}.$$

← Nonces

The DEFI Trapdoor operation

Sign(μ , B)

- ► Complete $H(\mu)$ into an isotropic z (i.e. $z^T Jz = 0$). \leftarrow Trapdoor operation
- ightharpoonup Return $m {f v}:={f B}^{-1}{f z}$. ← Obfuscation step

Trapdoor($h := H(\mu)$ **)**

- ▶ Generate small polynomials $u, v \leftarrow R$.
- ▶ Return

$$\mathbf{z} := \begin{pmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{pmatrix} = \begin{pmatrix} h \\ v + u^2 v - hv \\ v - u^2 v + hv \\ 2uv - h \end{pmatrix}. \quad \mathbf{z}^T \mathbf{J} \mathbf{z} = z_1^2 + z_2^2 - z_3^2 - z_4^2 \\ = \cdots = 0.$$

Trapdoor correctness:

$$\mathbf{z}^{T}\mathbf{J}\mathbf{z} = z_1^2 + z_2^2 - z_3^2 - z_4^2$$

= \cdots = 0.

The DEFI Trapdoor operation

$\mathsf{Sign}(\mu,\mathsf{B})$

- ► Complete $H(\mu)$ into an isotropic z (i.e. $z^T Jz = 0$). \leftarrow Trapdoor operation
- ightharpoonup Return $m {f y}:={f B}^{-1}{f z}$. ← Obfuscation step

Trapdoor($h := H(\mu)$ **)**

- ▶ Generate small polynomials $u, v \leftarrow R$.
- ▶ Return

$$\mathbf{z} := \begin{pmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{pmatrix} = \begin{pmatrix} h \\ v + u^2 v - hv \\ v - u^2 v + hv \\ 2uv - h \end{pmatrix}. \quad \mathbf{z}^T \mathbf{J} \mathbf{z} = z_1^2 + z_2^2 - z_3^2 - z_4^2 \\ = \cdots = 0.$$

Trapdoor correctness:

$$\mathbf{z}^{T}\mathbf{J}\mathbf{z} = z_1^2 + z_2^2 - z_3^2 - z_4^2$$

= \cdots = 0.

For future reference: notice that $z_2 + z_3 = 2v$ and $z_1 + z_4 = 2uv$.

Suspiciously good performances

Reported speed:

- $\mathbf{KeyGen} < 1 \; \mathrm{ms}$
- $\mbox{\bf Sign}\approx 0.1~\mbox{ms}$
- $Verif < 0.1 \ ms$

Security

Isotropic Vector Problem (IVP

Given $\mathbf{C} \in R^{4 \times 4}$ R-equivalent to $\mathrm{Diag}(1,1,-1,1)$, find $\mathbf{y} \in R^4$ such that

$$\mathbf{y}^T \mathbf{C} \mathbf{y} = 0.$$

(Module) Quad. Form Equivalence (QFE)

$$\mathbf{J} = \mathsf{Diag}(1,1,-1,1).$$

Given $\mathbf{C} \in R^{4 \times 4}$ R -equivalent to \mathbf{J} , find $\mathbf{B} \in \mathsf{GL}_4(R)$ such that

$$C = B^T J B$$
.

Security

Dream World:

- ► forgery breaks IVP
- ► key-recovery breaks QFE

Typical in Multivariate Crypto

Reality:

- ► No formal security proof
- ► Signatures leak information

Isotropic Vector Problem (IVP

Given $\mathbf{C} \in R^{4\times 4}$ R-equivalent to $\mathrm{Diag}(1,1,-1,1)$, find $\mathbf{y} \in R^4$ such that

$$\mathbf{y}^T \mathbf{C} \mathbf{y} = 0.$$

(Module) Quad. Form Equivalence (QFE)

 $\mathbf{J} = \mathsf{Diag}(1,1,-1,1).$ Given $\mathbf{C} \in R^{4 \times 4}$ R-equivalent to \mathbf{J} , find $\mathbf{B} \in \mathsf{GL}_4(R)$ such that

$$C = B^T J B$$
.

Security

Dream World:

- ► forgery breaks IVP
- ► key-recovery breaks QFE

Typical in Multivariate Crypto

Reality:

- ► No formal security proof
- ► Signatures leak information

Can we exploit the leakage?

Isotropic Vector Problem (IVP

Given $\mathbf{C} \in R^{4\times 4}$ R-equivalent to $\mathrm{Diag}(1,1,-1,1)$, find $\mathbf{y} \in R^4$ such that

$$\mathbf{y}^T \mathbf{C} \mathbf{y} = 0.$$

(Module) Quad. Form Equivalence (QFE)

 $\mathbf{J} = \mathsf{Diag}(1,1,-1,1).$ Given $\mathbf{C} \in R^{4 \times 4}$ R-equivalent to \mathbf{J} , find $\mathbf{B} \in \mathsf{GL}_4(R)$ such that

$$C = B^T J B$$
.

Outline

I. Intro: (Module)-Quadratic Form Equivalence?

II. The DEFI signature scheme by Feussner and Semaev

III. A key-recovery attack on DEFI

Attack Strategy: STEP I

Assuming access to multiple signatures $(\mathbf{y}^{(i)})_{i \in [k]}$.

The vulnerability lies in the trapdoor construction.

▶ The b_{ij} are small. ▶ The nonces $u^{(i)}$, $v^{(i)}$ are small.

STEP I:

Essential Equation I:

$$(0 \ 1 \ 1 \ 0) \cdot \mathbf{B}\mathbf{y}^{(i)} = z_2^{(i)} + z_3^{(i)} = 2v^{(i)}$$

STEP I: A friendly lattice

From Equation to Lattice

Define

$$L_1 := \left\{ f{x}^T egin{pmatrix} | & | & | & | & | & | \ f{e}_1 & f{e}_2 & f{e}_3 & f{e}_4 & f{y}^{(1)} & \cdots & f{y}^{(k)} \ | & | & | & | & | \end{pmatrix} : f{x} \in R^4
ight\}.$$

Then from $\mathbf{x}_1 = \begin{pmatrix} 0 & 1 & 1 & 0 \end{pmatrix} \cdot \mathbf{B}$ we get $\mathbf{s}_1 = (\mathbf{x}_1 || 2v^{(1)}, \dots, 2v^{(k)}) \in L_1$.

Reducing L_1

- ightharpoonup s₁ is a **short vector** of L_1 .
- ▶ As k increases, $\operatorname{rk}(L_1) = 4 \operatorname{dim}(R)$ stays constant, but $\|\mathbf{s}_1\| \ll \operatorname{GH}(L_1)$.
- ▶ For k large enough, LLL recovers some rotation $X^r \cdot \mathbf{s}_1$.

STEP I: A friendly lattice

From Equation to Lattice

Define

$$L_1 := \left\{ f{x}^T egin{pmatrix} | & | & | & | & | & | \ f{e}_1 & f{e}_2 & f{e}_3 & f{e}_4 & f{y}^{(1)} & \cdots & f{y}^{(k)} \ | & | & | & | & | \end{pmatrix} : f{x} \in R^4
ight\}.$$

Then from $\mathbf{x}_1 = \begin{pmatrix} 0 & 1 & 1 & 0 \end{pmatrix} \cdot \mathbf{B}$ we get $\mathbf{s}_1 = (\mathbf{x}_1 || 2v^{(1)}, \dots, 2v^{(k)}) \in L_1$.

Reducing L_1

Analysis is heuristic

- ightharpoonup s₁ is a **short vector** of L_1 .
- ▶ As k increases, $\operatorname{rk}(L_1) = 4 \operatorname{dim}(R)$ stays constant, but $\|\mathbf{s}_1\| \ll \operatorname{GH}(L_1)$.
- ▶ For *k* large enough, LLL recovers some rotation $X^r \cdot \mathbf{s}_1$.

STEP I: Partial Analysis

Lemma

If **A** and **B** are non-negative Hermitian matrices in $M_n(\mathbb{C})$,

$$\det(\mathbf{A}+\mathbf{B})^{1/n} \geq \det(\mathbf{A})^{1/n} + \det(\mathbf{B})^{1/n}.$$

We use this lemma to lower bound the covolume of L_1 . If $m := \dim(R)$ and 4|k, we model L_1 as

$$(\mathbf{I}_{4m} \mid | \mathbf{A}_1 \mid | \ldots | | \mathbf{A}_{k/4}),$$

where all A_i are square, independently sampled from the same distribution.

$$\mathsf{vol}(L_1)^{\frac{2}{4m}} = \det\left(\mathbf{I}_{4m} + \mathbf{A}_1\mathbf{A}_1^T + \ldots + \mathbf{A}_{k/4}\mathbf{A}_{k/4}^T\right)^{\frac{1}{4m}} \geq 1 + \sum_{i=1}^{k/4} \det\left(\mathbf{A}_i\mathbf{A}_i^T\right)^{\frac{1}{4m}}.$$

 $\|\mathbf{s}_1\|$ is easy to estimate.

STEP I: Wrapping up

After step I

If LLL succeeds we know rotations of:

- ► $b_{2j} + b_{3j}$.
- \blacktriangleright All the nonces $v^{(i)}$.
- ▶ We considered a few extra improvements.
- ▶ We do not care that we only get a rotation.

Attack Strategy: STEP II

Assuming access to multiple signatures $(\mathbf{y}^{(i)})_{i \in [k]}$.

The vulnerability lies in the trapdoor construction.

▶ The b_{ij} are small. ▶ The nonces $u^{(i)}, v^{(i)}$ are small.

STEP II:

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ b_{21} & b_{22} & b_{23} & b_{24} \\ b_{31} & b_{32} & b_{33} & b_{34} \\ \hline b_{41} & b_{42} & b_{43} & b_{44} \end{pmatrix}$$

Essential Equation II:

$$(1 \ 0 \ 0 \ 1) \cdot \mathbf{B}\mathbf{y}^{(i)} = z_1^{(i)} + z_4^{(i)} = 2u^{(i)}v^{(i)}$$

STEP II: We need a better lattice!

 $2u^{(i)}v^{(i)}$ is too big for the same lattice to work. But we know (a rotation of) $v^{(i)}$.

The trick

- ▶ Define $R_q := R/qR$, where q is a large prime number.
- ▶ The polynomials $2v^{(i)}$ are now invertible in R_q .

Lattice 2.0

From $\mathbf{x}_2 = \begin{pmatrix} 1 & 0 & 0 & 1 \end{pmatrix} \cdot \mathbf{B}$ we get $\mathbf{s}_2 = (\mathbf{x}_2 || u^{(1)}, \dots, u^{(k)}) \in L_2$.

Attempting to reduce L_2

- ightharpoonup s₂ is a **short vector** of L_2 . But not the shortest!
- $ightharpoonup \mathbf{s}_2' = (\mathbf{x}_1 || 1, 1, \dots, 1) \in L_2.$
- ▶ L_2 is q-ary, therefore $\operatorname{rk}(L_2) = (k+4) \dim(R)$. This is a problem!

Attempting to reduce L_2

- ightharpoonup s₂ is a **short vector** of L_2 . But not the shortest!
- ▶ $\mathbf{s}_2' = (\mathbf{x}_1 || 1, 1, ..., 1) \in L_2$.
- ▶ L_2 is q-ary, therefore $\operatorname{rk}(L_2) = (k+4) \operatorname{dim}(R)$. This is a problem!

We know a lot of suspiciously short vectors:

$$L_2':=\langle \mathbf{s}_2,\mathbf{s}_2' \rangle_R \subset L_2.$$

Attempting to reduce L_2

- ightharpoonup s₂ is a **short vector** of L_2 .
- ▶ L_2 is q-ary, therefore $\operatorname{rk}(L_2) = (k+4)\dim(R)$. This is a problem!

L₂ has unusual sublattices

- Dense sublattices, e.g.

$$R\textbf{s}_2\subset L_2'\subset L_2.$$

- LLL recovers L'_2 of rank $\operatorname{rk}(L'_2) = 2 \dim(R)$.
- Run lattice reduction directly on L'_2 .

Profile of LLL-reduced basis of L_2

Attempting to reduce L₂

- ightharpoonup s₂ is a **short vector** of L_2 .
- ▶ L_2 is q-ary, therefore $\operatorname{rk}(L_2) = (k+4)\dim(R)$. This is a problem!

L₂ has unusual sublattices

- Dense sublattices, e.g.

$$R\textbf{s}_2\subset L_2'\subset L_2.$$

- LLL recovers L'_2 of rank $\operatorname{rk}(L'_2) = 2 \dim(R)$.
- Run lattice reduction directly on L'_2 .

Profile of Looks like NTRU!

STEP II: Sublattices

LLL inequalities

If $(\mathbf{b}_1, \dots, \mathbf{b}_n)$ is LLL-reduced and $1 \le k \le n$, then

$$\det(\mathcal{L}(\mathbf{b}_1,\ldots,\mathbf{b}_k)) \leq 2^{k(n-k)/4} \det(L)^{k/n}.$$

Comparing with the Average Case

For Haar-random real lattices of rank n, the expected number of primitive sublattices L of rank k with $det(L) \leq H$ is

$$\frac{H^n}{n} \binom{n}{k} \prod_{i=1}^k \frac{V(n-i+1)\zeta(i)}{V(i)\zeta(n-i+1)},$$

where
$$V(i) = \frac{\pi^{i/2}}{\Gamma(1+i/2)}$$
.

STEP II: Wrapping up

- \blacktriangleright L_2' is independent of the (artificial) prime q. LLL will recover it for large enough q.
- ▶ We separate $R\mathbf{s}_2$ and $R\mathbf{s}_2'$ by reducing a skewed lattice.

STEP II: Wrapping up

- \blacktriangleright L_2' is independent of the (artificial) prime q. LLL will recover it for large enough q.
- ▶ We separate $R\mathbf{s}_2$ and $R\mathbf{s}_2'$ by reducing a skewed lattice.

After step II

If all succeeds we know rotations of:

- $\blacktriangleright b_{1j}+b_{4j}$.
- ▶ All the nonces $u^{(i)}$.

STEP III: Full key-recovery

Recall

$$C = B^T J B$$

 $c_{ij}, b_{1j}, b_{2j} + b_{3j}, b_{4j}$ are known.

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ b_{21} & b_{22} & b_{23} & b_{24} \\ b_{31} & b_{32} & b_{33} & b_{34} \\ b_{41} & b_{42} & b_{43} & b_{44} \end{pmatrix}$$

$$\implies \forall j \in \{1, 2, 3, 4\} \ c_{jj}^2 = b_{1j}^2 + b_{2j}^2 - b_{3j}^2 - b_{4j}^2$$

Remember the trick?

If we could invert, we would write

$$b_{2j} - b_{3j} = (b_{2j}^2 - b_{3j}^2)(b_{2j} + b_{3j})^{-1}.$$

▶ Invert in R_q and then round back to R! ▶ Detect rotations with parity.

DEFIv2: early thoughts

- ► Still no convincing security proof.
- ► Are there reasons why (Module)-QFE might achieve better performances than (Module)-LIP?
- ► Are there any attacks on (Module)-QFE from decomposition theorems on quadratic forms? What insight does this give on (Module)-LIP?
- ▶ Does a variant of our attack still apply?

DEFlv2: changes

► New ring/field! And surprise: it's not cyclotomic

$$K = \mathbb{Q}(X)/(X^{28} + X + 1).$$

▶ New trapdoor of the form:

$$\mathbf{z} = \begin{pmatrix} V_1 V_4 - V_2 V_3 \\ V_1 V_2 + V_3 V_4 \\ V_1 V_2 - V_3 V_4 \\ V_1 V_4 + V_2 V_3 \end{pmatrix}.$$

Summary and open problems

Conclusions:

- ▶ Interesting new assumptions for cryptography: IVP and QFE.
- ▶ A practical lattice attack on DEFI-128: 5min on a laptop with 10 signatures.
- ▶ Importance of rigorous security analysis before proposing new schemes.

Open Problems:

- ▶ Is a single signature enough to mount the attack?
- ▶ What are the exact conditions under which LLL recovers a dense sublattice?
- ► Can we fix it? New ring and trapdoor in DEFIv2 [FS24b].

Paper: eprint.iacr.org/2025/133

References I

Feussner & Semaev.

Isotropic Quadratic Forms, Diophantine Equations and Digital Signatures.

 $ePrint\ Archive:\ https://eprint.\ iacr.\ org/archive/2024/679/20240503:\ 175841\ .$

Feussner & Semaev.

Isotropic Quadratic Forms, Diophantine Equations and Digital Signatures, DEFIv2. ePrint Archive: https://eprint.iacr.org/archive/2024/679/20241105:105112.