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. Intro: (Module)-Quadratic Form Equivalence?

Il. The DEFI signature scheme by Feussner and Semaev

I1l. A key-recovery attack on DEFI
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A recent problem in lattice crypto [DvW22,BGPS23]

. . . . .
. . . .
. . . . .
. . . .
. . . . .
. . . .
. . . . .
. o AL o .
. . . . .

3/31



A recent problem in lattice crypto [DvW22,BGPS23]

4/31



A recent problem in lattice crypto [DvW22,BGPS23]

(search)-Lattice Isomorphism Problem: LIP

Given two lattices A1, Ao C R” such that
there exists O € O,(R) for which

A1 = O - Ny, recover a O (up to
automorphism).
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Lattice Isomorphism Problem

N is integral if (x,y) € Z for all x,y € A.
In particular if B is a basis of A, BTB € S,(Z).
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Lattice Isomorphism Problem

N is integral if (x,y) € Z for all x,y € A.
In particular if B is a basis of A, BTB € S,(Z).

LIP: Gram Matrix version

Let Q € S,(Z) be a positive definite quadratic form. Given Q' € S,(Z) another
positive definite quadratic form, find U € GL,(Z) such that

Q/ _ UTQU,

assuming such a U exists.
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Quadratic Forms: Terminology

» Over R:
x — x'Qx,

where x € R"” and Q is symmetric.
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Quadratic Forms: Terminology

» Over R:
x — x'Qx,

where x € R"” and Q is symmetric.
» Over C: .
z+— zTHz,

where z € C" and H is Hermitian.

» Q can be positive definite if x” Qx > 0 for x # 0.
» If the sign of x” Qx changes, we say Q is indefinite.
» A vector x # 0 such that x” Qx = 0 is called isotropic.
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Quadratic Forms: Equivalence

Equivalence of forms - unstructured

Quadratic forms Q, Q" € S,(Z) are Z-equivalent if there exists U € GL,(Z) such that

Q =u'qQu.
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Quadratic Forms: Equivalence

Equivalence of forms - unstructured

Quadratic forms Q, Q" € S,(Z) are Z-equivalent if there exists U € GL,(Z) such that
Q' =u’qQu.

More generally, let Z C R C C be a ring.

Equivalence of forms - structured

Hermitian forms H, H’ € H,(R) are R-equivalent if there exists U € GL,(R) such that

H = U’ HU.
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Where do we go from now?

LIP
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Where do we go from now?

LIP

more general forms

QFE
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Where do we go from now?

LIP

more general forms more structure

QFE | mod-LIP | HAWK

\
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Where do we go from now?

LIP

more general forms more structure

QFE | mod-LIP | HAWK

/

DEFI

8/31



» HAWK uses H = Diag(1,1) € R?*2:
Given H' € R?*2 R-equivalent to H, find B € GLy(R) such that H’ -B'B.
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» HAWK uses H = Diag(1,1) € R?*2:
Given H' € R?*2 R-equivalent to H, find B € GLy(R) such that H’ -B'B.

» DEFI uses J = Diag(1,1,—1, 1) € R4
Given C € R** R-equivalent to J, find B € GL4(R) such that C = BT JB.

In both cases, R = Z[X]/(X?“ + 1) is used in practice.
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..is this lattice or multivariate crypto?

Q = positive definite quadratic
form € R™*". Given Q' equivalent
to Q, find U € GL,(R) such that

Given (¢j), solve

Q=U'qu.
(e = b}, + b2, — bf; — b2,
2 = b3y + b3, — b33 — b3,
c33 = b3y + b3, — b33 — b3,
J = positive—definite indefinite Cas = bzl + bzz _ b§3 — b§4
quadratic form € R™". Given C :
equivalent to J, find B € GL.(R) '
such that where
N
= bj, ci € R = Z[X]/(X2 +1).

IMQ = Multivariate Quadratic.
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..is this lattice or multivariate crypto?

Q = positive definite quadratic
form € R™*". Given Q' equivalent
to Q, find U

Q MQ is hard so QFE should also be?

a1 = bfy + by — b33 — b,
2 = b3y + b3, — b33 — b3,
c33 = b3y + b3, — b33 — b3,

J = positive—definite indefinite Cas = bzl + bzz _ b§3 — b§4

quadratic form € R™". Given C :

equivalent to J, find B € GL.(R)

such that where

N
= bj, ci € R = Z[X]/(X2 +1).
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..is this lattice or multivariate crypto?

Q = positive definite quadratic
form € R™*". Given Q' equivalent
to Q, find U

o MQ is hard so QFE should also be?
[ ci1 = b3y + b3, — bi; — b,
2 2 2
Is QFE as hard as LIP?? + bgz - bgs - b§4
- s b3y — b33 — b3y,
J = positive—definite indefinite Cas = bzl & bzz — b§3 _ b§4
quadratic form € R™". Given C :

equivalent to J, find B € GL.(R)
such that

where

_RpT
C=B"JB. bj, cj € R = Z[X]/(X* +1).

IMQ = Multivariate Quadratic.
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..is this lattice or multivariate crypto?

Q = positive definite quadratic
form € R™*". Given Q' equivalent
to Q, find U
o MQ is hard so QFE should also be?
_ 2 2 2 2
[Cll = by + bi, — biz — by
2 2 2
Is QFE as hard as LIP?? + bgz - b;s - b§4
- s b3y — b33 — b3y,
J = pes-m-ve—dpﬁ-m*p indefinite ] Can — h2_ 1 bz%z _ b§3 _ b£4
quadratic form Can it be used to make nice schemes? 2
equivalent to J, — '
such that where
_RpT K
C=BJB. bij, cj € R = Z[X]/(X*" +1).

IMQ = Multivariate Quadratic.
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..is this lattice or multivariate crypto?

Q = positive definite quadratic
form € R™*". Given Q' equivalent
to Q, find U

Q MQ is hard so QFE should also be?

[Cll = bj, + b, — bi; — b3,

Is QFE as hard as LIP??

+ b3, — by — b3,

b3, — b3z — b3,

== =T
_ . L . n 5 P 5

J = pes-m-ve—dpﬁ-m*p indefinite ] Caa h2 L b42 _ b43 _ b44

quadratic form Can it be used to make nice schemes? 2

equivalent to J, -

such that s

C-=B"JB.

IMQ = Multivariate Quadratic.

i Gi € R = Z[X]/(X* +1).
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. Intro: (Module)-Quadratic Form Equivalence?

Il. The DEFI signature scheme by Feussner and Semaev

I1l. A key-recovery attack on DEFI

11/31



DEFI: A Hash-and-Sign Signature Scheme [FS524a]

> R =Z[X]/(X% +1) » J = Diag(1,1,-1,-1) € R#*
. . (1 0O1x3
» The Private key is a B = € SL4(R).
Ba; B

» The Public key is C := BT JB.

» Complete H(u) into an z (i.e. zTJz =0).
» Returny := B~1z.

» Accept iff H(u) =e/y and y"Cy = 0.
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. . (1 0O1x3
» The Private key is a B = € SL4(R).
Ba; B

» The Public key is C := BT JB.

» Complete H(u) into an z (i.e. z"Jz =0). < Trapdoor operation
» Returny := B~1z. <+ Obfuscation step

» Accept iff H(u) =e/y and y"Cy = 0.
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DEFI: A Hash-and-Sign Signature Scheme [FS524a]

> R =Z[X]/(X% +1) » J = Diag(1,1,-1,-1) € R#*
. . (1 0O1x3
» The Private key is a B = € SL4(R).
Ba; B

» The Public key is C := BT JB.

» Complete H(u) into an z (ie. z7Jz=0).| Correctness:

» Returny := B~1z.
y'Cy =y (B7JB)y

= (By)"J(By)
» Accept iff H(u) =e/y and y"Cy = 0. =z"Jz=0.
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The DEFI Trapdoor operation

» Complete H(u) into an z (i.e. z"Jz =0). < Trapdoor operation
» Returny := B71z. <+ Obfuscation step
Trapdoor(h := H(w)) \

» Generate small polynomials u, v < R. < Nonces
» Return

z1 h

2> v+ vlv — hy

z . — = 2
z3 vV —u“v+ hv
Z4 2uv — h
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The DEFI Trapdoor operation

» Complete H(u) into an z (i.e. z"Jz =0). < Trapdoor operation
» Returny := B71z. <+ Obfuscation step
Trapdoor(h := H(u)) \
» Generate small polynomials u, v < R.
~ i Trapdoor correctness:
Al s T 2, 2 2 2
,— 2] v+ u?v — hv 2 Jz=2z1+2z) —2z3—z
Tz T v—uiv+hv | ]

Z4 2uv — h
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» Complete H(u) into an
» Returny := B71z.

Trapdoor(h := H(u))

z (i.e. z'Jz = 0). «+ Trapdoor operation

< Obfuscation step

» Generate small polynomials u, v < R.
» Return

z1 h
,— |22 v+ u?v — hv
Tz | v—uPv+hy
Z4 2uv — h

Trapdoor correctness:

2

27 0z=2+2 -2 -2

—...=0.

2

For future reference: notice that z» + z3 = 2v and z; + z3 = 2uv.

The DEFI Trapdoor operation
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Signature size (Bytes)
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Suspiciously good performances
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Public key size (Bytes)

N Falcon 512 ¢
R HAWK @ |
DEFIv2 | Reported speed:
' .DEF|—128 A MAYO one *
| - KeyGen < 1 ms
X RSA 2048 \ :‘“@ - Slg|.1 ~ 0.1 ms
@ SQISign | X . - Verif < 0.1 ms
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Given C € RY* R-equivalent to
Diag(1,1,—1,1), find y € R* such that

y Cy =0.

J =Diag(1,1,-1,1).
Given C € R*** R-equivalent to J, find
B € GL4(R) such that

C=B"JB.
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. Given C € RY* R-equivalent to
DT Voadeh Diag(1,1,—1,1), find y € R* such that
» forgery breaks IVP

Tcy=o.
» key-recovery breaks QFE v

—[Typical in Multivariate Crypto]
Reality: J = Diag(1,1,-1,1).

» No formal security proof Given C € R*** R-equivalent to J, find
B € GL4(R) such that

» Signatures leak information

C=B"JB.
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. Intro: (Module)-Quadratic Form Equivalence?

Il. The DEFI signature scheme by Feussner and Semaev

I1. A key-recovery attack on DEFI
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Attack Strategy: STEP |

STEP I:

Assuming access to multiple signatures (y(i))ie[k].

1 0 0 0

The vulnerability lies in the trapdoor construction. br1 boo bos bog

» The bj; are small. » The nonces v v are small. bsi| |bs2| [bs3| |bsa
ba1  bax  bsz  bag

Essential Equation I:

0 1 1 0)-By® = 4
= 2v(i)
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STEP I: A friendly lattice

From Equation to Lattice 5

Define

I |
{ e2 e; ey y(l) 500 y(k) X E R4
Then from x; = (0 11 0) B we get s; — (x1|\2v(1) ..... 2v(k)) € ly.

» s; is a short vector of L.
» As k increases, rk(L;) = 4dim(R) stays constant, but ||s;|| < GH(Ly).
» For k large enough, LLL recovers some rotation X’ - sy
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STEP I: A friendly lattice

From Equation to Lattice \

Define

] |
{ e2 e; ey y(l) 500 y(k) X E R4
(0 1 1 0)-Bwegets; = (xi|[2v(V), ..., 2v(k)y e 1.

Then from x; =

J

[Analysis is heuristic]
» s; is a short vector of L.

» As k increases, rk(L1) = 4dim(R) stays constant, but ||s1|| < GH(L;).
» For k large enough, LLL recovers some rotation X’ - sy
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STEP I: Partial Analysis

Lemma

If A and B are non-negative Hermitian matrices in M,(C),
det(A + B)Y/" > det(A)Y/" + det(B)Y/".

k, we

We use this lemma to lower bound the covolume of Li. If m:=dim(R) and 4
model L1 as

(am || AL || .. | Ak/4) ,
where all A; are square, independently sampled from the same distribution.

1 k/4 1
vol(L1) 7 = det (lam + ALA] + ..+ AgAl )™ > 1+ det (AAT)™.
i=1
|ls1|| is easy to estimate.
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STEP I: Wrapping up

If LLL succeeds we know rotations of:
> sz + b3j. .
» All the nonces v(7.

» We considered a few extra improvements.

» We do not care that we only get a rotation.
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Attack Strategy: STEP Il

STEP II:

Assuming access to multiple signatures (y(i))ie[k].

1 0 0 0

The vulnerability lies in the trapdoor construction. br1 boo bos bog

» The bj; are small. » The nonces v v are small. bsi  bsp - b3z bsa
bai | |baz| |baz| |bas

Essential Equation II:

(100 1)-By® = )40
— 2y y0)
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STEP IlI: We need a better lattice!

2u()v(1) is too big for the same lattice to work. But we know (a rotation of) v().

» Define Ry := R/qR, where q is a large prime number.
» The polynomials 2v(7) are now invertible in R,

w
I |

Ly=qx" |er e e3 es (2W)7yW .. (2vl)y() | xe Ry

Fromx, = (1 0 0 1)-B we get s = (xo||uM), ..., uk)y € L.
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STEP IlI: The annoying lattice

» s, is a short vector of L.
| 2 S/2 = (XlH].,].,...,].) € L.
» L, is g-ary, therefore rk(Ly) = (k + 4)dim(R).
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STEP IlI: The annoying lattice

» s, is a short vector of L.
| 2 S/2 = (XlH].,].,...,].) € L.
» L, is g-ary, therefore rk(Ly) = (k + 4)dim(R).

We know a lot of suspiciously short vectors:

le = (5275,2>R C L2.
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STEP IlI: The annoying lattice

» s, is a short vector of L.
» L, is g-ary, therefore rk(Ly) = (k + 4)dim(R).

L, has unusual sublattices \

- Dense sublattices, e.g.

Rs,; C L/2 C L.

- LLL recovers L} of rank rk(L,) = 2dim(R). | |
- Run lattice reduction directly on L. 0 200 400
Profile of LLL-reduced basis of L,
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STEP IlI: The annoying lattice

» s, is a short vector of L.
» L, is g-ary, therefore rk(Ly) = (k + 4)dim(R).

L, has unusual sublattices \

- Dense sublattices, e.g.

Rs,; C L/2 C L.

- LLL recovers L} of rank rk(L,) = 2dim(R).

| |
- Run lattice reduction directly on L. 0 200 400 o
i . RUL*
\ Profile o \_Ooks \ike NT
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STEP II: Sublattices

LLL inequalities

If (b1,...,by) is LLL-reduced and 1 < k < n, then

det(L(by, ..., by)) < 2K(=R/* det(L)k/n,

Comparing with the Average Case
For Haar-random real lattices of rank n, the expected number of primitive sublattices L
of rank k with det(L) < H is

2 (v

i/
where V( ) m
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STEP Il: Wrapping up

» L) is independent of the (artificial) prime g. LLL will recover it for large enough q.
» We separate Rs; and Rs), by reducing a skewed lattice.
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STEP Il: Wrapping up

» L) is independent of the (artificial) prime g. LLL will recover it for large enough q.
» We separate Rs; and Rs), by reducing a skewed lattice.

If all succeeds we know rotations of:
> blj ar b4j. '
» All the nonces u(7.
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STEP IlI: Full key-recovery

STEP Il

1 0 0 0
c=8"JB \ba| |b2| |ba| |ba

Cij, b]_j, sz =+ b3j, b4j are known. b31 b32 b33 b34
ba1  bax  bsz  bag

= Vj€{1,2,3,4} ¢ = b3+ b5, — b3, — b

Remember the trick? )

If we could invert, we would write
boj — bsj = (b5; — b3;)(baj + bsj) ™"

» Invert in Ry and then round back to R! » Detect rotations with parity.
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DEFIv2: early thoughts

» Still no convincing security proof.

» Are there reasons why (Module)-QFE might achieve better performances than
(Module)-LIP?

» Are there any attacks on (Module)-QFE from decomposition theorems on
quadratic forms? What insight does this give on (Module)-LIP?

» Does a variant of our attack still apply?
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DEFIv2: changes

» New ring/field! And surprise: it's not cyclotomic
K=Q(X)/(X®B+X+1).
» New trapdoor of the form:

ViV — WL \5
ViV + V3V,
ViVs — VsV,
ViVe + Vo3
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Summary and open problems

Conclusions:

» Interesting new assumptions for cryptography: IVP and QFE.
» A practical lattice attack on DEFI-128: 5min on a laptop with 10 signatures.

» Importance of rigorous security analysis before proposing new schemes.

Open Problems:

» Is a single signature enough to mount the attack?
» What are the exact conditions under which LLL recovers a dense sublattice?
» Can we fix it? New ring and trapdoor in DEFIv2 [FS24b].

Paper: eprint.iacr.org/2025/133
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eprint.iacr.org/2025/133
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