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A recent problem in lattice crypto [DvW22,BGPS23]

Λ1
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Λ2=O ·Λ1

(search)-Lattice Isomorphism Problem: LIP

Given two lattices Λ1,Λ2 ⊂ Rn such that
there exists O ∈ On(R) for which
Λ1 = O · Λ2, recover a O (up to
automorphism).
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Lattice Isomorphism Problem

Λ is integral if ⟨x, y⟩ ∈ Z for all x, y ∈ Λ.
In particular if B is a basis of Λ, BTB ∈ Sn(Z).

LIP: Gram Matrix version

Let Q ∈ Sn(Z) be a positive definite quadratic form. Given Q′ ∈ Sn(Z) another
positive definite quadratic form, find U ∈ GLn(Z) such that

Q′ = UTQU,

assuming such a U exists.
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Quadratic Forms: Terminology

▶ Over R:
x 7→ xTQx,

where x ∈ Rn and Q is symmetric.

▶ Over C:
z 7→ zTHz,

where z ∈ Cn and H is Hermitian.

▶ Q can be positive definite if xTQx > 0 for x ̸= 0.

▶ If the sign of xTQx changes, we say Q is indefinite.

▶ A vector x ̸= 0 such that xTQx = 0 is called isotropic.
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Quadratic Forms: Equivalence

Equivalence of forms - unstructured

Quadratic forms Q,Q′ ∈ Sn(Z) are Z-equivalent if there exists U ∈ GLn(Z) such that

Q′ = UTQU.

More generally, let Z ⊆ R ⊂ C be a ring.

Equivalence of forms - structured

Hermitian forms H,H′ ∈ Hr (R) are R-equivalent if there exists U ∈ GLr (R) such that

H′ = U
T
HU.
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Where do we go from now?

LIP

QFE mod-LIP

mod-QFE

more general forms more structure

DEFI

HAWK
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Examples

▶ HAWK uses H = Diag(1, 1) ∈ R2×2:

Given H′ ∈ R2×2 R-equivalent to H, find B ∈ GL2(R) such that H′ = B
T
B.

▶ DEFI uses J = Diag(1, 1,−1,−1) ∈ R4×4.

Given C ∈ R4×4 R-equivalent to J, find B ∈ GL4(R) such that C = BTJB.

In both cases, R = Z[X ]/(X 2k + 1) is used in practice.
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...is this lattice or multivariate crypto?

LIP with Gram Matrices

Q = positive definite quadratic
form ∈ R r×r . Given Q′ equivalent
to Q, find U ∈ GLr (R) such that

Q′ = U
T
QU.

New! Quadratic Form Equivalence

J = positive definite indefinite
quadratic form ∈ R r×r . Given C
equivalent to J, find B ∈ GLr (R)
such that

C = BTJB.

(Polynomial Ring) MQ1 Problem

Given (cij), solve

c11 = b211 + b212 − b213 − b214
c22 = b221 + b222 − b223 − b224
c33 = b231 + b232 − b233 − b234
c44 = b241 + b242 − b243 − b244

...

,

where

bij , cij ∈ R = Z[X ]/(X 2k + 1).

MQ is hard so QFE should also be?

Is QFE as hard as LIP??

Can it be used to make nice schemes?

Let’s see...

1MQ = Multivariate Quadratic.
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DEFI: A Hash-and-Sign Signature Scheme [FS24a]

▶ R = Z[X ]/(X 64 + 1) ▶ J = Diag(1, 1,−1,−1) ∈ R4×4

KeyGen

▶ The Private key is a small B =

(
1 01×3

B21 B22

)
∈ SL4(R).

▶ The Public key is C := BTJB.

Sign(µ,B)

▶ Complete H(µ) into an isotropic z (i.e. zTJz = 0).

← Trapdoor operation

▶ Return y := B−1z.

← Obfuscation step

Verif(y, µ,C)

▶ Accept iff H(µ) = eT1 y and yTCy = 0.

Correctness:

yTCy = yT (BTJB)y

= (By)TJ(By)

= zTJz = 0.

12 / 31



DEFI: A Hash-and-Sign Signature Scheme [FS24a]

▶ R = Z[X ]/(X 64 + 1) ▶ J = Diag(1, 1,−1,−1) ∈ R4×4

KeyGen

▶ The Private key is a small B =

(
1 01×3

B21 B22

)
∈ SL4(R).

▶ The Public key is C := BTJB.

Sign(µ,B)

▶ Complete H(µ) into an isotropic z (i.e. zTJz = 0). ← Trapdoor operation
▶ Return y := B−1z.

← Obfuscation step

Verif(y, µ,C)

▶ Accept iff H(µ) = eT1 y and yTCy = 0.

Correctness:

yTCy = yT (BTJB)y

= (By)TJ(By)

= zTJz = 0.

12 / 31



DEFI: A Hash-and-Sign Signature Scheme [FS24a]

▶ R = Z[X ]/(X 64 + 1) ▶ J = Diag(1, 1,−1,−1) ∈ R4×4

KeyGen

▶ The Private key is a small B =

(
1 01×3

B21 B22

)
∈ SL4(R).

▶ The Public key is C := BTJB.

Sign(µ,B)

▶ Complete H(µ) into an isotropic z (i.e. zTJz = 0). ← Trapdoor operation
▶ Return y := B−1z. ← Obfuscation step

Verif(y, µ,C)

▶ Accept iff H(µ) = eT1 y and yTCy = 0.

Correctness:

yTCy = yT (BTJB)y

= (By)TJ(By)

= zTJz = 0.

12 / 31



DEFI: A Hash-and-Sign Signature Scheme [FS24a]

▶ R = Z[X ]/(X 64 + 1) ▶ J = Diag(1, 1,−1,−1) ∈ R4×4

KeyGen

▶ The Private key is a small B =

(
1 01×3

B21 B22

)
∈ SL4(R).

▶ The Public key is C := BTJB.

Sign(µ,B)

▶ Complete H(µ) into an isotropic z (i.e. zTJz = 0). ← Trapdoor operation
▶ Return y := B−1z. ← Obfuscation step

Verif(y, µ,C)

▶ Accept iff H(µ) = eT1 y and yTCy = 0.

Correctness:

yTCy = yT (BTJB)y

= (By)TJ(By)

= zTJz = 0.

12 / 31



The DEFI Trapdoor operation

Sign(µ,B)

▶ Complete H(µ) into an isotropic z (i.e. zTJz = 0). ← Trapdoor operation
▶ Return y := B−1z. ← Obfuscation step

Trapdoor(h := H(µ))

▶ Generate small polynomials u, v ← R. ← Nonces
▶ Return

z :=


z1
z2
z3
z4

 =


h

v + u2v − hv
v − u2v + hv

2uv − h

 .

Trapdoor correctness:

zTJz = z21 + z22 − z23 − z24

= · · · = 0.

For future reference: notice that z2 + z3 = 2v and z1 + z4 = 2uv.
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Suspiciously good performances

0 200 400 600 800 1,000 1,200 1,400
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Reported speed:

- KeyGen < 1 ms

- Sign ≈ 0.1 ms

- Verif < 0.1 ms
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Security

Dream World:

▶ forgery breaks IVP

▶ key-recovery breaks QFE

Reality:

▶ No formal security proof

▶ Signatures leak information

Isotropic Vector Problem (IVP)

Given C ∈ R4×4 R-equivalent to
Diag(1, 1,−1, 1), find y ∈ R4 such that

yTCy = 0.

Reduces to

(Module) Quad. Form Equivalence (QFE)

J = Diag(1, 1,−1, 1).
Given C ∈ R4×4 R-equivalent to J, find
B ∈ GL4(R) such that

C = BTJB.

Typical in Multivariate Crypto

Can we exploit
the leakage

?
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Attack Strategy: STEP I

Assuming access to multiple signatures (y(i))i∈[k].

The vulnerability lies in the trapdoor construction.

▶ The bij are small. ▶ The nonces u(i), v (i) are small.

STEP I:
1 0 0 0
b21 b22 b23 b24
b31 b32 b33 b34
b41 b42 b43 b44



Essential Equation I:

(
0 1 1 0

)
· By(i) = z

(i)
2 + z

(i)
3

= 2v (i)

17 / 31



STEP I: A friendly lattice

From Equation to Lattice

Define

L1 :=

xT

 | | | | | |
e1 e2 e3 e4 y(1) · · · y(k)

| | | | | |

 : x ∈ R4

 .

Then from x1 =
(
0 1 1 0

)
· B we get s1 = (x1||2v (1), . . . , 2v (k)) ∈ L1.

Reducing L1

▶ s1 is a short vector of L1.
▶ As k increases, rk(L1) = 4 dim(R) stays constant, but ∥s1∥ ≪ GH(L1).
▶ For k large enough, LLL recovers some rotation X r · s1.

Analysis is heuristic

18 / 31



STEP I: A friendly lattice

From Equation to Lattice

Define

L1 :=

xT

 | | | | | |
e1 e2 e3 e4 y(1) · · · y(k)

| | | | | |

 : x ∈ R4

 .

Then from x1 =
(
0 1 1 0

)
· B we get s1 = (x1||2v (1), . . . , 2v (k)) ∈ L1.

Reducing L1

▶ s1 is a short vector of L1.
▶ As k increases, rk(L1) = 4 dim(R) stays constant, but ∥s1∥ ≪ GH(L1).
▶ For k large enough, LLL recovers some rotation X r · s1.

Analysis is heuristic

18 / 31



STEP I: Partial Analysis

Lemma

If A and B are non-negative Hermitian matrices in Mn(C),

det(A+ B)1/n ≥ det(A)1/n + det(B)1/n.

We use this lemma to lower bound the covolume of L1. If m := dim(R) and 4|k , we
model L1 as (

I4m || A1 || . . . || Ak/4

)
,

where all Ai are square, independently sampled from the same distribution.

vol(L1)
2
4m = det

(
I4m + A1A

T
1 + . . .+ Ak/4A

T
k/4

) 1
4m ≥ 1 +

k/4∑
i=1

det
(
AiA

T
i

) 1
4m
.

∥s1∥ is easy to estimate.

19 / 31



STEP I: Wrapping up

After step I

If LLL succeeds we know rotations of:
▶ b2j + b3j .
▶ All the nonces v (i).

▶ We considered a few extra improvements.

▶ We do not care that we only get a rotation.
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Attack Strategy: STEP II

Assuming access to multiple signatures (y(i))i∈[k].

The vulnerability lies in the trapdoor construction.

▶ The bij are small. ▶ The nonces u(i), v (i) are small.

STEP II:
1 0 0 0
b21 b22 b23 b24
b31 b32 b33 b34
b41 b42 b43 b44



Essential Equation II:

(
1 0 0 1

)
· By(i) = z

(i)
1 + z

(i)
4

= 2u(i)v (i)
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STEP II: We need a better lattice!

2u(i)v (i) is too big for the same lattice to work. But we know (a rotation of) v (i).

The trick

▶ Define Rq := R/qR, where q is a large prime number.
▶ The polynomials 2v (i) are now invertible in Rq.

Lattice 2.0

L2 :=

xT

 | | | | | |
e1 e2 e3 e4 (2v (1))−1y(1) · · · (2v (k))−1y(k)

| | | | | |

 : x ∈ R4
q

 .

From x2 =
(
1 0 0 1

)
· B we get s2 = (x2||u(1), . . . , u(k)) ∈ L2.

22 / 31



STEP II: The annoying lattice

Attempting to reduce L2

▶ s2 is a short vector of L2. But not the shortest!
▶ s′2 = (x1||1, 1, . . . , 1) ∈ L2.
▶ L2 is q-ary, therefore rk(L2) = (k + 4) dim(R). This is a problem!

We know a lot of suspiciously short vectors:

L′2 := ⟨s2, s′2⟩R ⊂ L2.

23 / 31
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STEP II: The annoying lattice

Attempting to reduce L2

▶ s2 is a short vector of L2.
▶ L2 is q-ary, therefore rk(L2) = (k + 4) dim(R). This is a problem!

L2 has unusual sublattices

- Dense sublattices, e.g.

Rs2 ⊂ L′2 ⊂ L2.

- LLL recovers L′2 of rank rk(L′2) = 2 dim(R).

- Run lattice reduction directly on L′2. 0 200 400
0

2

4

6

Profile of LLL-reduced basis of L2

Looks
like NTRU!
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STEP II: Sublattices

LLL inequalities

If (b1, . . . ,bn) is LLL-reduced and 1 ≤ k ≤ n, then

det(L(b1, . . . ,bk)) ≤ 2k(n−k)/4 det(L)k/n.

Comparing with the Average Case

For Haar-random real lattices of rank n, the expected number of primitive sublattices L
of rank k with det(L) ≤ H is

Hn

n

(
n

k

) k∏
i=1

V (n − i + 1)ζ(i)

V (i)ζ(n − i + 1)
,

where V (i) = πi/2

Γ(1+i/2) .
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STEP II: Wrapping up

▶ L′2 is independent of the (artificial) prime q. LLL will recover it for large enough q.

▶ We separate Rs2 and Rs′2 by reducing a skewed lattice.

After step II

If all succeeds we know rotations of:
▶ b1j + b4j .
▶ All the nonces u(i).
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STEP III: Full key-recovery

Recall

C = BTJB

cij , b1j , b2j + b3j , b4j are known.

STEP III:
1 0 0 0
b21 b22 b23 b24
b31 b32 b33 b34
b41 b42 b43 b44


=⇒ ∀j ∈ {1, 2, 3, 4} c2jj = b21j + b22j − b23j − b24j

Remember the trick?

If we could invert, we would write

b2j − b3j = (b22j − b23j)(b2j + b3j)
−1.

▶ Invert in Rq and then round back to R! ▶ Detect rotations with parity.
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DEFIv2: early thoughts

▶ Still no convincing security proof.

▶ Are there reasons why (Module)-QFE might achieve better performances than
(Module)-LIP?

▶ Are there any attacks on (Module)-QFE from decomposition theorems on
quadratic forms? What insight does this give on (Module)-LIP?

▶ Does a variant of our attack still apply?
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DEFIv2: changes

▶ New ring/field! And surprise: it’s not cyclotomic

K = Q(X )/(X 28 + X + 1).

▶ New trapdoor of the form:

z =


V1V4 − V2V3

V1V2 + V3V4

V1V2 − V3V4

V1V4 + V2V3

 .
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Summary and open problems

Conclusions:

▶ Interesting new assumptions for cryptography: IVP and QFE.

▶ A practical lattice attack on DEFI-128: 5min on a laptop with 10 signatures.

▶ Importance of rigorous security analysis before proposing new schemes.

Open Problems:

▶ Is a single signature enough to mount the attack?

▶ What are the exact conditions under which LLL recovers a dense sublattice?

▶ Can we fix it? New ring and trapdoor in DEFIv2 [FS24b].

Paper: eprint.iacr.org/2025/133
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