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Disclaimer

Talk based on https://eprint.iacr.org/2024/411.pdf.
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SIS-based ID protocol

Public parameters:
A∈ Zn×m

q ,T=AS
Secret parameters:
short S∈ Zm×k

q

Prover

y
$← Vy ,Y ←Ay

z←y+Sc

Verifier

c
$← Vc

Accept if Az = Y+Tc and z short

Y

c

zIf z /∈ Vz : Restart
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Fiat-Shamir with Aborts

Message:
µ

Public parameters:
A∈ Zn×m

q ,T=AS
Signing Key:

short S∈ Zm×k
q

Signer

y
$← Vy ,Y ←Ay

short c← H(Y, µ)

z←y+Sc

If z /∈ Vz : Restart

Verifier

c
$← Vc

Accept if H(Az−Tc, µ) = c and z short

Y

c

(z, c)

6 / 46



Rejection sampling: a brief history of distributions

Idea: provably transform an imperfect distribution into a perfect distribution.

[Lyu09, DKL+21]

[DDLL13, CCD+23]

[Lyu12]

[CCD+23]
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Important remarks

Our security relies on structured variants of SIS:
MLWE, MSIS and SelfTargetMSIS.

The important metric for signature size and Supp(Vcs) is the L2 metric.

We focus on the unimodal case (for now).

We focus on uniform distributions.

Notation: we identify distribution Vy and set Supp(Vy ).
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Rejection sampling: motivation

Vcs

c2s2c1s1

y1
y2z2z1

Knowing z should reveal no information on y and cs.
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Rejection sampling: motivation

Vcs

c2s2c1s1

y1
y2

z2z1

Witness-Indistinguishability: each z in the blue area is equally
likely to have been generated from any valid secret key.

This must hold for all elements of Vcs.
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What do we want?

Assuming uniform distributions z avoids information leakage if and only if:

Vz ⊆
⋂

x∈Vcs

(Vy + x).

Furthermore, Vz minimises the number of rejects if and only if:

Vz =
⋂

x∈Vcs

(Vy + x).

maxz∈Vz ∥z∥2 conditions the signature size.

Rejection rate depends on the tightness of the inclusion.
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Illustration: a Square
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Illustration: a Square
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Starting Point: DFPS22

Probability of rejecting:

Vol(Vz)

Vol(Vy )
.

[DFPS22] observe that Gaussian
distributions and uniform distributions
in Hyperballs give optimal sizes.
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Hyperballs: Pros and Cons

- Very small sizes (optimal according to [DFPS22]).

- Hard to mask against side channels.

- Hard to sample (Fixed point arithmetic).

- Only analysed in the continuous setting.

- Used in HAETAE [CCD+23].
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Hypercubes: Pros and Cons

- Larger sizes (in some sense hard to do worse).

- Easy to mask against side channels.

- Very simple sampler.

- Valid in the discrete setting.

- Used in DILITHIUM [DKL+21].
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Proposing a tradeoff: Objectives

What we want:

- Good proof sizes (better than DILITHIUM).

- A simple sampler (no FP arithmetic and no Gaussians).

- A valid analysis in the discrete setting.
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Our solution: Polytopes

Definition (Polytope)

A polytope is the convex hull of its vertices V(P) = {x1, . . . , xv} ∈ Rn.

Pn
1,0 Pn

1,(2,0,0) Pn
2,0
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Polytope intersection: a useful tool

Theorem (P-ception: Intersection of polytopes)

Let P be a symmetric inscriptible and circumscriptible polytope. Let r ,R ∈ R>0 such
that R > r . Then:⋂

c∈Pr

PR,c =
⋂

c∈V(Pr )

PR,c =
⋂

one ci per face of Pr

PR,ci = PR−r .

Corollary (Discrete version)

If V(Pr ) ⊂ Zn, then ⋂
c∈Pr,Z

PR,c =
⋂

c∈V(Pr )

PR,c,Z = PR−r ,Z,

where PZ = P ∩ Zn.
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P-ception: Illustration 1
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P-ception: Illustration 2
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Rejection Sampling with Polytopes: Continuous case

Let Pn be a symmetric polytope whose vertices all lie on a sphere.

Theorem (informal)

If Vy = Pn
R and Vcs ⊆ Pn

r , then:

VolPn
R−r

VolPn
R

=

(
R − r

R

)n

determines the rejection rate.

In practical instantiations, r ≪ R.
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Rejection Sampling with Polytopes: Discrete case

Let Pn be a symmetric polytope, with integral vertices all on a sphere, then:

Theorem (informal)

If Vy = Pn
R ∩ Zn and Vcs ⊆ Pn

r ∩ Zn, then:

|Pn
R−r ,Z|
|Pn

R,Z|
=

VolPn
R−r

VolPn
R

·
|Pn

R−r ,Z|
VolPn

R−r

·
VolPn

R

|Pn
R−r ,Z|

=

(
R − r

R

)n 1 + εR
1 + εR−r

determines the rejection rate.

Computing ε should be done only once, and requires:

- Volumes of integral polytopes.

- Counting integral points in polytopes.

}
Efficient for well-chosen polytopes
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Extra motivation: Optimality of rejection

Recall that we would like
maximality of:⋂

x∈Vcs

(Vy + x).

If the support Vy is a polytope, and if P is a symmetric polytope that
admits an inscribed ball B2 that is tangent to all of its faces, then we
can interchangeably use P or B2 for the support of cs.

24 / 46



Extra motivation: Optimality of rejection

Recall that we would like
maximality of:⋂

x∈Vcs

(Vy + x).

If the support Vy is a polytope, and if P is a symmetric polytope that
admits an inscribed ball B2 that is tangent to all of its faces, then we
can interchangeably use P or B2 for the support of cs.

24 / 46



Extra motivation: Optimality of rejection

Recall that we would like
maximality of:⋂

x∈Vcs

(Vy + x).

If the support Vy is a polytope, and if P is a symmetric polytope that
admits an inscribed ball B2 that is tangent to all of its faces, then we
can interchangeably use P or B2 for the support of cs.

24 / 46



Roadmap

I. Intro: Fiat-Shamir and Rejection Sampling

II. The Polytope-based Framework

III. Choosing a Polytope H

IV. Sampling in H ∩ Zn

25 / 46



Polytope choice: Cutting a rare gem

What we want for P:
. Symmetric

. Inscriptible

. Circumscriptible

. Small ratio

. Integral vertices

. Efficiently samplable
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Interlude: High-dimensional balls

The Hypercube:

B∞(R) = {x ∈ Rn : ∀i , |xi | ≤ R}.

Norm: L∞.

Volume: (2R)n.

Inradius: R.

Circumradius:
√
nR.

Mass concentrates: at the corners.
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Interlude: High-dimensional balls

The Cross-polytope1:

B1(R) = {x ∈ Rn :
∑
|xi | ≤ R}.

Norm: L1.

Volume: (2R)n

n! .

Inradius: 1√
n
R.

Circumradius: R.

Mass concentrates: at the center.

1also called Hyperoctahedron, Orthoplex, or Cocube.
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The Polytope H

Hn
r = Bn∞(r)∩Bn1(r

√
n)
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Some properties of H

Volume ≈ Vol(Bn1(r
√
n)) :

(2r
√
n)n

n!

⌊
√
n⌋∑

i=0

(−1)i
(
n

i

)(
1− i√

n

)n+1

Inradius: r (by design).

Circumradius:

r
√
⌊
√
n⌋+ (

√
n − ⌊

√
n⌋)2 ≤ r 4

√
n.

H is symmetric, and perfectly
inscriptible and circumscriptible.
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A useful projection

The following sets are isomorphic via a
simple projection:

Sn+1
1,Z+(r

√
n) = {y ∈ Zn+1

≥0 : ∥y∥1 = r
√
n},

Bn1,Z+(r
√
n) = {y ∈ Zn

≥0 : ∥y∥1 ≤ r
√
n}.

Bonus trick: project away from the
largest coordinate to lower E(∥y∥∞).
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Sampling in H ∩ Zn

SampleL1Sphere(n, r)

1 : // S = {X ⊂ J1, r + n − 1K : #X = n − 1}

2 : X
$← U(S)

3 : X← {0} ∪ X ∪ {r + n}
4 : X.sort()

5 : // x0, · · · , xn the ordered elements of X

6 : for i ∈ J1, nK :

7 : b
$← {0, 1}

8 : yi ← (xi − xi−1 − 1)

9 : if yi + b = 0 then

10 : restart

11 : yi ← (−1)byi
12 : return Y := (yi )1≤i≤n

SampleL1Ball(n, r)

1 : (yi )n+1
$← SampleL1Sphere(n + 1, r)

2 : return (y1, · · · , yn)

SampleH(n, r)

1 : ∆n ← (
√
n − ⌊

√
n⌋)

2 : r ′ ← ⌊
√
n⌋r + ⌊∆nr⌋

3 : Y ← ⊥
4 : while Y = ⊥ do

5 : Y ← SampleL1Ball(n, r ′)

6 : if ∥Y∥∞ > r then

7 : Y ← ⊥
8 : return Y
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Making the sampler Uniform and Isochronous

Mind the sides!

Flip n coins for signs.

Restart for each 0 coordinate,
with probability 1/2.

. Uniform: ✓

. Isochronous: ✓

. Expected restarts: small if
n≪ r .
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Recap.

We have simple sampling with quality n1/4
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Reject more for better performances

Cnθ,r = Hn
r ∩B2(θ·r)

where θ ≈ 1.5

Key observation: for θ > c ,

1−exp(−
√
n) <

Vol Cnθ,r
VolHn

r

< 1.

Ratio n1/4 → θ

Trade-off between aborts and size.

Warning: not a polytope anymore.
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A new Fiat-Shamir with Aborts signature scheme: PATRONUS
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Signature performances: Concrete (example) parameters

- Signature sizes: (in bytes)

Security target (bits) 120 180 260

HAETAE 1,463 2,337 2,908
PATRONUS2 (this work) 1,869 2,398 3,459
DILITHIUM 2,420 3,293 4,595

- Verification key sizes: Similar to DILITHIUM ✓

- Expected rejects: Similar to HAETAE ✓

- Sampler randomness: at most 1.3 times that of DILITHIUM ✓

- Optimised sampler implementation: Work in progress

2Parameters may still vary
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Takeaway

What you should remember:

- We propose a new framework for rejection sampling in polytopes.

- This allows for rigorous analysis of perfect rejection in Fiat-Shamir.

- Our polytope H uses L1 and L∞ balls to approach an optimal L2 ball.

- It is easy to sample from HZ.

- This leads to the signature scheme PATRONUS , an interesting tradeoff
between DILITHIUM and HAETAE.
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Can we get a better polytope?

Theorem (From [Kas77])

There exists a constant 1 < c < 32 such that for each n, there exists an orthogonal
U ∈ On(R) such that

Bn2(1) ⊆ Bn1(
√
n) ∩ UBn1(

√
n) ⊆ Bn2(c).

⋂
=
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The Bimodal situation

Objective: Use the trick by [DDLL13] for
better sizes.

- We need to study

I =
⋂

sc∈B2(r)

(PR,sc ∪ PR,−sc)

- No improvement in the Hypercube case.

- For H, no obvious improvement after dim 4 as
the largest H in I is HR−r .

- For C, less unlikely.
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The End

Thank you for listening!

If you have extra questions, feel free to contact Hugo (hugo.beguinet@ens.fr)
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