Special Lattices in Cryptology Combinatorial Geometry and Number Theory

Henry Bambury¹

¹ENS Paris, Inria

27 August 2024

Intro: New Standards in Quantum-Safe Crypto

Shor's quantum algorithm threatens the RSA cryptosystem.

This lead to the rise of lattice crypto (1996 \rightarrow today)!

Federal Information Processing Standards Publication 203

Published: August 13, 2024 Effective: August 13, 2024

Announcing the

Module-Lattice-Based Key-Encapsulation Mechanism Standard

Figure: ML-KEM (Kyber)

Security from hard problems: SVP and CVP

- RSA relies on the hardness of factoring.
- Lattice crypto relies on the hardness of finding short vectors in Euclidean lattices.

The Shortest Vector Problem (SVP)

Given **B** a basis of a lattice $\Lambda \subset \mathbb{R}^n$, find a $\mathbf{v} \in \Lambda$ such that $\|\mathbf{v}\|_2 = \lambda_1(\Lambda)$.

The Closest Vector Problem (CVP)

Given **B** a basis of a lattice $\Lambda \subset \mathbb{R}^n$ and a target vector $\mathbf{t} \in \mathbb{R}^n$, find a $\mathbf{v} \in \Lambda$ such that $\|\mathbf{t} - \mathbf{v}\|_2 = \text{dist}(\mathbf{t}, \Lambda)$.

Security from hard problems: CVP (1)

Security from hard problems: CVP (2)

Security from hard problems: SVP and CVP

- ▶ In dim 2, a generalised version of Euclid's gcd algorithm is sufficient.
- ▶ Lattices in cryptographic schemes have dim ≈ 1000 .
- ▶ "On average" in such dimensions, solving SVP is hard.
- ▶ But... crypto uses special classes of lattices \rightarrow weaker security guarantees.

- \blacktriangleright First reduce the lattice using LLL or stronger variants of this algorithm.
- ▶ Then conclude with clever rounding.

Lattice reduction is everywhere: factoring polynomials, breaking cryptography, finding linear relations, solving quadratic equations, computing class groups, disproving conjectures, representing ideals on a computer, ...

- \triangleright K a number field with signature (r_1, r_2) and discriminant Δ_K .
- \triangleright \mathcal{O}_K its ring of integers.
- Minkowski embedding sends ideals $\mathcal{I} \subset \mathcal{O}_K$ to lattices in $K \otimes \mathbb{R}$ (equipped with inner product $(x, y) \mapsto Tr(x\overline{y})$.

Minkowski embedding:

$$
\begin{array}{rcl}\n\sigma & : & K & \rightarrow & K \otimes \mathbb{R} \cong \mathbb{R}^{r_1} \times \mathbb{C}^{r_2} \\
\alpha & \mapsto & (\sigma_1(\alpha), \ldots, \sigma_{r_1+r_2}(\alpha))\n\end{array}
$$

Norm ↔ Volume:

$$
\mathsf{covol}(\sigma(\mathcal{I})) = \mathsf{N}(\mathcal{I})\sqrt{|\Delta_{\mathsf{K}}|}
$$

Lemma (short vectors are somewhat large)

$$
\sqrt{n}N(\mathcal{I})^{1/n}\leq \lambda_1(\sigma(\mathcal{I}))\leq \sqrt{|\Delta_K|}^{1/n}\sqrt{n}N(\mathcal{I})^{1/n}.
$$

Definition

An ideal lattice is a lattice $\sigma(\mathcal{I}) \subset K \otimes \mathbb{R}$ where \mathcal{I} is an \mathcal{O}_K -ideal, and $K \otimes \mathbb{R}$ is equipped with inner product $(x, y) \mapsto Tr(\alpha x \overline{y})$, where $\alpha \in GL_1(K \otimes \mathbb{R})$ and $\alpha = \overline{\alpha}$.

- Ideal lattices are Hermitian line bundles (\mathcal{I}, α) .
- Many well-known lattices:
	- **►** for $K = \mathbb{Q}(\sqrt{-3})$ and $(\mathcal{O}_K, 1)$ we get the hexagonal lattice.
	- many others also come from cyclotomic fields (E_8 , Leech,...).

Nice property: full-rank lattices Λ such that $\mathcal{O}_K \cdot \Lambda \subseteq \Lambda$.

Ideal lattices: why are they useful?

Widely used in cryptology since 2010.

Bases can be stored much more efficiently.

Figure: Random lattice basis Figure: Structured lattice basis Figure: Storage gain!

Outside of crypto: the idea that lattices with nice symmetries have large shortest vectors was used by Venkatesh to prove high dimensional lattice packing lower bounds.

Ideal lattices in cyclotomic fields: (quantum) weakness [CDPR16]

Question

Given a basis for a (principal) \mathcal{O}_K -ideal \mathcal{I} , can one recover a short generator of I ?

Question

Given a basis for a (principal) \mathcal{O}_K -ideal \mathcal{I} , can one recover a short generator of I ?

Log embedding: For $\alpha \in K^{\times}$, $\mathsf{Log}(\alpha) = (\ln |\sigma(\alpha)|)_\sigma \in \mathbb{R}^n$.

Unit attack (principal case):

- \bullet Start with a principal ideal \mathcal{I} ;
- \bullet Find a generator g of \mathcal{I} ;
- **3** In $\Lambda := \text{Log}(\mathcal{O}_{\mathcal{K}}^{\times})$ K^{\times}), find a vector $Log(u) \in \Lambda$ close to $Log(g)$;
- **O** Output $g' := g/u$.

Question

Given a basis for a (principal) \mathcal{O}_K -ideal \mathcal{I} , can one recover a short generator of I ?

- \triangleright Step 2: easy with a quantum computer.
- ▶ Step 3: requires a short basis of (a sublattice of) Λ. It can be constructed in cyclotomic fields.

Log embedding: For $\alpha \in K^{\times}$, $\mathsf{Log}(\alpha) = (\ln |\sigma(\alpha)|)_\sigma \in \mathbb{R}^n$.

Unit attack (principal case):

- \bullet Start with a principal ideal \mathcal{I} :
- \bullet Find a generator g of \mathcal{I} ;
- **3** In $\Lambda := \text{Log}(\mathcal{O}_{\mathcal{K}}^{\times})$ K^{\times}), find a vector $Log(u) \in \Lambda$ close to $Log(g)$;
- **O** Output $g' := g/u$.

Question

Given a basis for a (principal) \mathcal{O}_K -ideal \mathcal{I} , can one recover a short generator of I ?

- \triangleright Step 2: easy with a quantum computer.
- ▶ Step 3: requires a short basis of (a sublattice of) Λ. It can be constructed in cyclotomic fields.

Log embedding: For $\alpha \in K^{\times}$, $\mathsf{Log}(\alpha) = (\ln |\sigma(\alpha)|)_\sigma \in \mathbb{R}^n$.

Unit attack (principal case):

- \bullet Start with a principal ideal \mathcal{I} ;
- \bullet Find a generator g of \mathcal{I} ;
- **3** In $\Lambda := \text{Log}(\mathcal{O}_{\mathcal{K}}^{\times})$ K^{\times}), find a vector $Log(u) \in \Lambda$ close to $Log(g)$;
- **O** Output $g' := g/u$.

What about non-principal ideals or other number fields? The problem then reduces to decoding a single "Log-S-unit" lattice.

Definition

A **module lattice** of rank t is a pair (M, g) where $g \in \mathsf{GL}_t(K \otimes \mathbb{R})$ and $M \subseteq K^t$ is a (full-rank) finitely generated \mathcal{O}_K -module.

- Widely used in crypto since 2015.
- ▶ No magic improvement towards solving SVP.

Ideal lattices are rank-1 module lattices.

Figure: Structured lattice basis

Number field $K \cong \mathbb{Q}[X]/(f(X))$ for some irreducible $f(X)$.

Elements are represented as vectors of coefficients.

We want coefficients of products of polynomials mod f to stay bounded. This is best achieved for $X^n \pm 1$.

 \blacktriangleright Conclusion: we end up using cyclotomic polynomials $X^{2^k}+1$ and their associated cyclotomic fields.

In standardised crypto: rank 2, 3, 4 modules.

In 1996, Hoffstein, Pipher and Silverman introduce the NTRU cryptosystem over a polynomial ring $\mathbb{Z}[X]/(X^n-1)$.

▶ More generally, NTRU lattices are rank-2 \mathcal{O}_K -module lattices with basis $\begin{pmatrix} 1 & h \\ 0 & g \end{pmatrix}$ 0 q $\bigg),$ with an unusually dense rank-1 submodule ($q \in \mathbb{Z}_{>1}$ and $h \in \mathcal{O}_K$). For now,

Ideal lattice SVP ≤ NTRU ≤ Rank-2 module lattice SVP

NTRU is inherantly a *symplectic* lattice, which makes it easier to reduce.

NTRU lattice reduction is still very much open.

Gaussian heuristic and average behaviour

Heuristic point counting

How many lattice points does my convex measurable set X contain?

$$
\#(\Lambda \cap X) \approx \frac{\text{vol}(X)}{\text{covol}(\Lambda)}.
$$

▶ Leads to statements like

$$
\lambda_1(\Lambda) \approx \frac{\mathrm{covol}(\Lambda)^{1/n}}{\mathrm{vol}(B_2(1))^{1/n}}.
$$

▶ True on average (Siegel/Rogers/...).

But not always true...

Interesting questions:

- ▶ Do we have better point-counting techniques in *special* lattices?
- ▶ Is the behaviour of lattice functions fundamentally different on spaces of module/ideal lattices compared to random lattices in general?
- Can we leverage potential differences to speed up LLL-like algorithms on such lattices?

Nicer arguments for security: WC to AC reduction for ideal lattices

Worst-case to Average-case reduction: "If I can solve SVP for a random ideal lattice, then \overline{I} can solve SVP for any ideal lattice".

Before anything else:

- What is a random ideal lattice?
- We fix the covolume.
- We remove isometric lattices.

Figure: $K = \mathbb{Q}(\sqrt{2})$ (PID) Figure: $K = \mathbb{Q}(\sqrt{2})$ 2) (PID)

WC to AC reduction for ideal lattices [dBDPW20]

In fact we have the short exact sequence

$$
0 \to \text{Log}(K_{\mathbb{R}})^0/\text{Log}(\mathcal{O}_K^{\times}) \to \underbrace{\text{Ideal Lattice Classes}_{K}}_{Arakelov \text{ class group Pic}_K^0} \to \text{Cl}_K \to 0.
$$

From there:

- ▶ We have enough compactness to define random.
- We can define a random walk whose steps preserve the easiness of "SVP finding".
- \blacktriangleright Using Fourier analysis on $\widetilde{\mathsf{Pic}^0_K}$, one can show that the walk reaches the uniform distribution fast enough.

Worst-case to Average-case reduction: "If I can solve SVP for a random ideal lattice, then I can solve SVP for any ideal lattice".

New problems in lattice crypto [DvW22]

Lattice Isomorphism Problem (search)

Given two lattices $\Lambda_1, \Lambda_2 \subset \mathbb{R}^n$ such that there exists $O \in \mathcal{O}_n(\mathbb{R})$ for which $Λ_1 = O \cdot Λ_2$, recover an equivalent O.

Lattice Isomorphism Problem (decision)

Given two lattices $\Lambda_1, \Lambda_2 \subseteq \mathbb{R}^n$, decide whether $\Lambda_1 \cong \Lambda_2$ or not.

New problems in lattice crypto

 $\Lambda_2=O \cdot \Lambda_1$

Lattice Isomorphism Problem (search)

Given two lattices $\Lambda_1, \Lambda_2 \subset \mathbb{R}^n$ such that there exists $O \in \mathcal{O}_n(\mathbb{R})$ for which $Λ_1 = O \cdot Λ_2$, recover an equivalent O.

Lattice Isomorphism Problem (decision)

Given two lattices $\Lambda_1, \Lambda_2 \subseteq \mathbb{R}^n$, decide whether $\Lambda_1 \cong \Lambda_2$ or not.

How to solve Lattice Isomorphism?

Strategy for Search-LIP:

- ▶ Use lattice reduction to get a set of short vectors.
- Recover the isometry from the vector set.

The best approach is exponential in runtime and memory.

(Partial) Strategy for Distinguish-LIP:

- \blacktriangleright Find efficiently computable invariants inv(\cdot) that are as fine as possible.
- **E** If inv(Λ_1) \neq inv(Λ_2), then we can immediately conclude.
- We now restrict to *integral lattices*, or equivalently Gram matrices with all integer entries.

Some Invariants

- Rank: $n = \dim_{\mathbb{R}}(\text{span}(\Lambda))$
- D Covolume: vol(Rⁿ/Λ)

► Gcd: gcd $\{\langle x, y \rangle : x, y \in \Lambda\}$

Equivalence over \mathcal{R} : does there exist $U \in GL_n(\mathcal{R})$ such that $U^T G_1 U = G_2$?

Genus

The genus gen(Λ) is the set of lattices equivalent to Λ over $\mathbb R$ and all $\mathbb Z_p$ for prime p.

A genus class is compatible with the Siegel Haar measure.

Interesting questions:

- Is the genus the best (computable) invariant?
- Can we have Worst-case to Average-case reductions inside a genus?
- ▶ How does this translate to the (module) structured variant of LIP?

Recap

In this overview talk we have seen...

- ▶ Special lattices from crypto:
	- Ideal lattices
	- Module lattices
	- NTRU lattices
- Some lattice problems:
	- Lattice reduction
	- SVP, CVP
	- Lattice Isomorphism
- ▶ A lot of structure from active number theory topics, sometimes hundreds of years old.
	- Lattice crypto is only 10-30 years old.
	- ✓ Very few researchers understand both worlds in depth yet those lattices are already being used by many.
	- $\sqrt{ }$ I hope this encourages work on better understanding of those special lattices, their average behaviour, and how to reduce them.