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Intro: New Standards in Quantum-Safe Crypto

▶ Shor’s quantum algorithm threatens the RSA cryptosystem.
▶ This lead to the rise of lattice crypto (1996 → today)!

Figure: ML-KEM (Kyber)
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Security from hard problems: SVP and CVP

▶ RSA relies on the hardness of factoring.
▶ Lattice crypto relies on the hardness of finding short vectors in Euclidean lattices.

The Shortest Vector Problem (SVP)

Given B a basis of a lattice Λ ⊂ Rn, find a
v ∈ Λ such that ∥v∥2 = λ1(Λ).

The Closest Vector Problem (CVP)

Given B a basis of a lattice Λ ⊂ Rn and a
target vector t ∈ Rn, find a v ∈ Λ such
that ∥t− v∥2 = dist(t,Λ).
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Security from hard problems: CVP (1)
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Security from hard problems: CVP (2)
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Security from hard problems: SVP and CVP

▶ In dim 2, a generalised version of
Euclid’s gcd algorithm is sufficient.

▶ Lattices in cryptographic schemes
have dim ≈ 1000.

▶ “On average” in such dimensions,
solving SVP is hard.

▶ But... crypto uses special classes of
lattices → weaker security guarantees.

How to solve CVP:
▶ First reduce the lattice using

LLL or stronger variants of this
algorithm.

▶ Then conclude with clever
rounding.

Lattice reduction is everywhere: factoring polynomials, breaking cryptography, finding
linear relations, solving quadratic equations, computing class groups, disproving
conjectures, representing ideals on a computer, ...
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Lattices from ideals in number fields

▶ K a number field with signature
(r1, r2) and discriminant ∆K .

▶ OK its ring of integers.

▶ Minkowski embedding sends ideals
I ⊆ OK to lattices in K ⊗R (equipped
with inner product (x , y) 7→ Tr(xy)).

Minkowski embedding:

σ : K → K ⊗ R ∼= Rr1 × Cr2

α 7→ (σ1(α), . . . , σr1+r2(α))

Norm ↔ Volume:

covol(σ(I)) = N(I)
√
|∆K |

Lemma (short vectors are somewhat large)

√
nN(I)1/n ≤ λ1(σ(I)) ≤

√
|∆K |

1/n√
nN(I)1/n.
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Ideal lattices: definition and examples

Definition

An ideal lattice is a lattice σ(I) ⊂ K ⊗ R where I is an OK -ideal, and K ⊗ R is
equipped with inner product (x , y) 7→ Tr(αxy), where α ∈ GL1(K ⊗ R) and α = α.

▶ Ideal lattices are Hermitian line bundles (I, α).
▶ Many well-known lattices:

▶ for K = Q(
√
−3) and (OK , 1) we get the hexagonal lattice.

▶ many others also come from cyclotomic fields (E8, Leech,...).

Nice property: full-rank lattices Λ such that OK · Λ ⊆ Λ.

8 / 21



Ideal lattices: why are they useful?

▶ Widely used in cryptology since 2010.

▶ Bases can be stored much more efficiently.

Figure: Random lattice basis Figure: Structured lattice basis Figure: Storage gain!

Outside of crypto: the idea that lattices with nice symmetries have large shortest
vectors was used by Venkatesh to prove high dimensional lattice packing lower
bounds.
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Ideal lattices in cyclotomic fields: (quantum) weakness [CDPR16]

Question

Given a basis for a (principal) OK -ideal I,
can one recover a short generator of I?

▶ Step 2: easy with a quantum
computer.

▶ Step 3: requires a short basis of (a
sublattice of) Λ. It can be constructed
in cyclotomic fields.

Log embedding: For α ∈ K×,

Log(α) = (ln |σ(α)|)σ ∈ Rn.

Unit attack (principal case):

1 Start with a principal ideal I;
2 Find a generator g of I;
3 In Λ := Log(O×

K ), find a vector
Log(u) ∈ Λ close to Log(g);

4 Output g ′ := g/u.

What about non-principal ideals or other number fields? The problem then reduces to
decoding a single “Log-S-unit” lattice.
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Module lattices

Definition

A module lattice of rank t is a pair (M, g) where
g ∈ GLt(K ⊗ R) and M ⊆ K t is a (full-rank)
finitely generated OK -module.

▶ Widely used in crypto since 2015.

▶ No magic improvement towards solving SVP.

Ideal lattices are rank-1 module lattices.

Figure: Structured lattice basis

Figure: Storage gain!
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Which number field(s) should we pick?

▶ Number field K ∼= Q[X ]/(f (X )) for some irreducible f (X ).

▶ Elements are represented as vectors of coefficients.

▶ We want coefficients of products of polynomials mod f to stay bounded. This is
best achieved for X n ± 1.

▶ Conclusion: we end up using cyclotomic polynomials X 2k + 1 and their associated
cyclotomic fields.

In standardised crypto: rank 2, 3, 4 modules.
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NTRU: In between module and symplectic lattices

In 1996, Hoffstein, Pipher and Silverman introduce the NTRU cryptosystem over
a polynomial ring Z[X ]/(X n − 1).

▶ More generally, NTRU lattices are rank-2 OK -module lattices with basis

(
1 h
0 q

)
,

with an unusually dense rank-1 submodule (q ∈ Z>1 and h ∈ OK ).

For now,

Ideal lattice SVP ≤ NTRU ≤ Rank-2 module lattice SVP

▶ NTRU is inherantly a symplectic lattice, which makes it easier to reduce.

▶ NTRU lattice reduction is still very much open.
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Gaussian heuristic and average behaviour

Heuristic point counting

How many lattice points does my convex
measurable set X contain?

#(Λ ∩ X ) ≈ vol(X )

covol(Λ)
.

▶ Leads to statements like

λ1(Λ) ≈
covol(Λ)1/n

vol(B2(1))1/n
.

▶ True on average (Siegel/Rogers/...).

▶ But not always true...

Interesting questions:

▶ Do we have better point-counting techniques in special lattices?

▶ Is the behaviour of lattice functions fundamentally different on spaces of
module/ideal lattices compared to random lattices in general?

▶ Can we leverage potential differences to speed up LLL-like algorithms on
such lattices?
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Nicer arguments for security: WC to AC reduction for ideal lattices

Worst-case to Average-case reduction: “If I can solve SVP for a random ideal
lattice, then I can solve SVP for any ideal lattice”.

Before anything else:

▶ What is a random ideal
lattice?

▶ We fix the covolume.

▶ We remove isometric lattices.

Figure: K = Q(
√
2) (PID) Figure: K = Q(

√
2) (PID)
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WC to AC reduction for ideal lattices [dBDPW20]

In fact we have the short exact sequence

0 → Log(KR)
0/ Log(O×

K ) → Ideal Lattice ClassesK︸ ︷︷ ︸
Arakelov class group Pic0K

→ ClK → 0.

From there:

▶ We have enough compactness to define random.

▶ We can define a random walk whose steps preserve the easiness of “SVP finding”.

▶ Using Fourier analysis on P̂ic0K , one can show that the walk reaches the uniform
distribution fast enough.

Worst-case to Average-case reduction: “If I can solve SVP for a random ideal
lattice, then I can solve SVP for any ideal lattice”.
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New problems in lattice crypto [DvW22]

Λ1

Lattice Isomorphism Problem (search)

Given two lattices Λ1,Λ2 ⊂ Rn such that
there exists O ∈ On(R) for which
Λ1 = O · Λ2, recover an equivalent O.

Lattice Isomorphism Problem (decision)

Given two lattices Λ1,Λ2 ⊆ Rn, decide
whether Λ1

∼= Λ2 or not.
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New problems in lattice crypto

O

Λ1

Λ2

Λ2=O ·Λ1
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How to solve Lattice Isomorphism?

Strategy for Search-LIP:

▶ Use lattice reduction to get a set of short vectors.

▶ Recover the isometry from the vector set.

The best approach is exponential in runtime and memory.

(Partial) Strategy for Distinguish-LIP:

▶ Find efficiently computable invariants inv(·) that are as
fine as possible.

▶ If inv(Λ1) ̸= inv(Λ2), then we can immediately conclude.

▶ We now restrict to integral lattices, or equivalently Gram matrices with all integer
entries.
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Some Invariants

▶ Rank: n = dimR(span(Λ))

▶ Covolume: vol(Rn/Λ)

▶ Gcd: gcd{⟨x, y⟩ : x, y ∈ Λ}
▶ Equivalence over R: does there exist

U ∈ GLn(R) such that UTG1U = G2?

Genus

The genus gen(Λ) is the set of lattices equivalent to Λ over R and all Zp for prime p.

- A genus class is compatible with the Siegel Haar measure.

Interesting questions:

▶ Is the genus the best (computable) invariant?

▶ Can we have Worst-case to Average-case reductions inside a genus?

▶ How does this translate to the (module) structured variant of LIP?
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Recap

In this overview talk we have seen...

▶ Special lattices from crypto:

- Ideal lattices
- Module lattices
- NTRU lattices

▶ Some lattice problems:

- Lattice reduction
- SVP, CVP
- Lattice Isomorphism

▶ A lot of structure from active number theory topics, sometimes hundreds of years
old.

✓ Lattice crypto is only 10-30 years old.

✓ Very few researchers understand both worlds in depth yet those
lattices are already being used by many.

✓ I hope this encourages work on better understanding of those
special lattices, their average behaviour, and how to reduce them.

Thank you!
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