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Motivation: Multimodal Benchmark Functions for
Evolutionary Algorithms
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Framework of study

Pseudo-Boolean optimization: f : {0, 1}n → R, find (one of) its
global maximum.

A wide class of algorithms: Evolutionary Algorithms.
Algorithms that rely on notions of mutation and selection for
optimization purposes.

{0, 1}n is the searchspace;
x ∈ {0, 1}n is an individual;
f is the fitness function.
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Benchmark functions

Because of the great diversity of pseudo-Boolean functions, there is no
hope for obtaining general theoretical results on the problem.

It is standard to focus on a few representative functions to gauge strengths
and weaknesses. Famous ones:

OneMax

LeadingOnes

Jumpk

etc.

The choice and design of benchmark functions is a cornerstone of theory
of EAs.
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Jumpk,δ: a Generalized Jumpk

Jumpk(x) =
{
‖x‖1 if ‖x‖1 ∈ [0..n − k] ∪ {n},
−‖x‖1 otherwise,

Jumpk,δ(x) =


‖x‖1 if ‖x‖1 ∈ [0..n − k]∪

[n − k + δ..n],

−‖x‖1otherwise.

Jumpk Jumpk,δ
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Consequences of this generalization

Contrarily to what one could think, Jumpk,δ is not equivalent to Jumpδ
followed by OneMax.

On Jump5 with n = 40, when stuck on the local optima, there is only
1 point with strictly better fitness.

On Jump10,5 with n = 40, there are
∑

i=1,2,3,4,5

(10
i

)
= 647.

Intuition

Since crossing the valley is (way) easier on Jumpk,δ, algorithms should
benefit from an exponential speedup.
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Impact on the runtime of algorithms
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1 (1 + 1) EA with Fixed Mutation Rate

2 Fast (1 + 1) EA

3 RLS with Stagnation Detection
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The Simplest Evolutionary Algorithm

Algorithm 1: The (1 + 1) EA with fitness function f : {0, 1}n → R and
static mutation rate p

1 Initialization;
2 x ∈ {0, 1}n ← uniform at random;
3 Optimization;
4 repeat
5 Sample y ∈ {0, 1}n by flipping each bit in x with probability p;
6 if f (y) ≥ f (x) then
7 x ← y

8 until Stopping condition;

H.Bambury, A.Bultel (École polytechnique) Generalized Jump Functions July 10-14, 2021 10 / 32



Performance on Jumpk

Result obtained by Doerr et al. in [DLMN17].

(1 + 1) EA on Jumpk

The best possible expected optimization time of the (1 + 1) EA on Jumpk
is asymptotically achieved in p = k

n , and is asymptotically

Θ

((
k

n

)−k ( n

n − k

)n−k
)
.

Furthermore, any deviation from that value leads to exponential loss in
runtime.

It is not obvious whether this generalizes to Jumpk,δ.
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Performance on Jumpk ,δ

Definition (Standard regime)

Let the standard regime (SR) be the space in which: k = o(n1/3)

Performance in the standard regime

In the SR, if furthermore p = o( 1√
n`

),

Tp(k, δ, n) = (1 + o(1))
1(k

δ

)
pδ(1− p)n−δ

.
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Performance on Jumpk ,δ in the Standard regime

Theorem

In the SR, the asymptotic best choice of p is p = δ
n , which gives the

runtime

Tδ/n(k , δ, n) = (1 + o(1))

(
k

δ

)−1 (en
δ

)δ
,

and any deviation from that optimal value results in exponential in δ loss
on the runtime.
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1 (1 + 1) EA with Fixed Mutation Rate

2 Fast (1 + 1) EA

3 RLS with Stagnation Detection
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(1 + 1) FEAβ

Introduced in [DLMN17] to improve the simple (1 + 1) EA on Jumpk .

The mutation rate is chosen randomly at each iteration, using a
power-law distribution.

Figure: Plot of a Heavy-tailed power-law distribution.
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Pseudocode

Algorithm 2: The (1 + 1) FEAβ with fitness f : {0, 1}n → R
1 Initialization;
2 x ∈ {0, 1}n ← uniform at random;
3 Optimization;
4 repeat

5 Sample α randomly in [1..n/2] with power-law distribution Dβ
n/2;

6 Sample y ∈ {0, 1}n by flipping each bit in x with probability α
n ;

7 if f (y) ≥ f (x) then
8 x ← y

9 until Stopping condition;
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Performance on Jumpk

The runtime of (1 + 1) FEAβ is a small polynomial above the best
runtime with fixed mutation rate.

Theorem [DLMN17]

Let n ∈ N and β > 1. For all k ∈ [2..n/2], with m > β − 1, the expected
optimization time Tβ(k , n) of the (1 + 1) FEAβ on Jumpk satisfies

Tβ(k, n) = O
(
Cβn/2k

β−0.5Topt(k, n)
)
,

Where Topt(k, n) is the expected runtime of the simple (1 + 1) EA with
the optimal fixed mutation rate p = k

n .
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Performance on Jumpk ,δ

We proved that the result generalizes well.

Theorem

Let n ∈ N and β > 1. For all k, δ in the standard regime, with δ > β − 1,
the expected optimization time Tβ(k , δ, n) of the (1 + 1) FEAβ satisfies

Tβ(k , δ, n) = O
(
Cβn/2δ

β−0.5Tδ/n(k , δ, n)
)
.
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1 (1 + 1) EA with Fixed Mutation Rate

2 Fast (1 + 1) EA

3 RLS with Stagnation Detection
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SD-RLS

Introduced earlier this year by A.Rajabi and C.Witt in [RW21].

For each iteration, instead of standard bit mutation with p = r
n ,

randomized local search of strength r is used. Exactly r bits are
chosen uniformly at random and flipped.

The strength changes along the run, but not randomly:
Initialized as r = 1.
If the algorithm stays stuck in the same layer for ln(R)

(
n
r

)
iterations,

then with probability at least 1− 1
R there is no improvement at

Hamming distance r (R is a control parameter). In this case the
strength is increased to r + 1.
When a strictly better search point is found, return to r = 1.
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SD-RLS∗

Problem: With SD-RLS, termination is not ensured. If the only
improvement is at Hamming distance m from the search point, and missed
during phase m, the algorithms does not terminate.

Solution: Visit the strengths in a different order.

SD-RLS: 1→ 2→ 3→ 4→ . . .

SD-RLS∗: 1→ 2− 1→ 3− 2− 1→ 4− 3− 2− 1→ . . .

The full pseudocode can be found in [RW21].
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Performance on Jumpk

Theorem [RW21]

Let n ∈ N. Let TSD−RLS∗(k , n) be the expected runtime of the SD-RLS∗

on Jumpk , with R ≥ n2+ε for some constant ε > 0. For all k ≥ 2,

TSD−RLS∗(k , n) =

{(n
k

)
(1 + O( k2

n−2k ln(n) )) if k < n/2,

O(2nn ln(n)) if k ≥ n/2.

Better than the (1 + 1) EA with optimal mutation rate by a factor(
en
k

)−k (n
k

)
, which is at least 1/e for small values of k.
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Performance on Jumpk ,δ

Theorem

Let TSD−RLS∗(k, δ, n) be the runtime of the SD-RLS∗ on Jumpk,δ.
Suppose that there exists a constant ε > 0 such that the control
parameter is R ≥ n2+ε. Then if k ≤ n − ω(

√
n) and δ ≥ 3,

TSD−RLS∗(k , δ, n) = (1 + o(1))

ln(R)
δ−1∑
i=1

i∑
j=0

(
n

j

)
+

(
n

δ

)(
k

δ

)−1
 .
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Comparaison to other algorithms

It is easy to see that this runtime is asymptotically larger than the previous
ones. The following lemma puts that difference into perspective.

Theorem

For any integer K , there exists an instance of Jumpk,δ, within the
standard regime, on which

TSD−RLS∗(k, δ, n) = Ω
(
nK−1T 1

n
(k , δ, n)

)
.
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Experiments
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Experiments

Figure: Optimization times of different algorithms on Jumpk,δ with k = δ = 4.
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Experiments

Figure: Optimization times on Jumpk,δ for k = 3 ln(n), δ = k
2 .
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Conclusion
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Conclusion: The Jumpk ,δ function

Jumpk,δ(x) =

{
‖x‖1 if ‖x‖1 ∈ [0..n − k] ∪ [n − k + δ..n],

−‖x‖1 otherwise.

A more realistic version of the well-known Jumpk function.
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Conclusion: Performance of Algorithms

Algorithm Jumpk Jumpk,δ in the SR

(1 + 1) EA with optimal MR Θ((kn )−k( n
n−k )n−k) [DLMN17] (1 + o(1))( enδ )δ

(k
δ

)−1

(1 + 1) FEAβ O(Cβn/2k
β−0.5(kn )−k( n

n−k )n−k) [DLMN17] O(Cβn/2δ
β−0.5( enδ )δ

(k
δ

)−1
)

SD-RLS∗
(n
k

)
(1 + O( k2

n−2k ln(n))) [RW21] (1 + o(1))[ln(R)
∑δ−1

i=1

∑i
0

(n
j

)
+
(n
δ

)(k
δ

)−1
]
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Conclusion: Performance of Algorithms

Algorithm Jumpk Jumpk,δ in the SR

(1 + 1) EA with optimal MR Θ((kn )−k( n
n−k )n−k) (1 + o(1))( enδ )δ

(k
δ

)−1

(1 + 1) FEAβ kβ−0.5 δβ−0.5

SD-RLS∗
(
en
k

)k (n
k

)−1
Ω(nK ), ∀K > 0
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