
S-unit attacks on

structured lattice-based

cryptosystems

Henry Bambury

St John’s College

University of Oxford

A dissertation submitted for the degree

MSc Mathematics and Foundations of Computer Science

Trinity 2022



Acknowledgements

I would like to thank Christophe Petit for his supervision on this disserta-

tion, as well as my college advisor Stefan Kiefer for his support throughout

the year.

I would also like to thank my college for giving me the opportunity to

attend the Summer School in Post-Quantum Cryptography organised in

Budapest, while I was studying for this dissertation.

Finally, I am grateful to the Direction Générale de l’Armement for gen-

erously funding my degree.



Abstract

Amidst concerns that society will need new forms of encryption to protect

itself against the arrival of the (in)famous quantum computer, alternatives

to integer factoring and discrete logarithm problems have started to rise.

The most promising amongst them relies on the problem of finding short

vectors in lattices endowed with a particular number theoretic structure,

usually that of an ideal in a cyclotomic number field.

While this problem is believed to be difficult for general lattice instances,

it was uncovered during the past decade that one can use log-lattices from

unit and S-unit groups together with new quantum algorithms to recover

mildly short vectors in structured lattices. The vectors obtained by these

so-called S-unit attacks are not short enough to have cryptographic con-

sequences, but algorithms are rapidly developing and it has been claimed

that an S-unit attack could recover arbitrarily short vectors.

In this work we present the mathematical background for understanding

structured lattices in cryptography, we describe and survey the evolution

of S-unit attacks and their relation to post-quantum cryptography. In

the case of prime-power cyclotomics, we compare the behaviour of the

log-unit lattice to that of a random lattice, justifying why S-unit attacks

could reach much shorter vectors than currently expected. Finally, we

state a recent conjecture by Daniel J. Bernstein regarding S-unit attacks.
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Chapter 1

Introduction

1.1 Post-Quantum Cryptography

Classically, cryptography is the art of enabling secure communication in the presence

of malicious eavesdroppers. Modern cryptography as a science relies on mathemati-

cal theory and computational hardness assumptions. Public-key cryptography enables

parties to communicate securely without the need to share a secret key beforehand.

Classical public-key cryptography is used daily by browsers for web authentication,

by banks for secure transactions, and by instant messaging services for secure commu-

nication. Such classical systems rely on the hardness of discrete logarithm problems

or integer factoring.

In 1994, Peter Shor introduces a quantum algorithm that breaks integer factoring

and discrete logarithms in polynomial time, rendering all classical public-key cryp-

tography useless against a quantum computer. This sparks the need for a new way

to go about cryptography: Post-quantum cryptography is the area of cryptography

in which security is studied under the assumption that adversaries have access to a

fully-functioning quantum computer. Importantly, the user only has access to a clas-

sical computer, so post-quantum cryptography is not to be confused with quantum

cryptography. Over the past couple decades, quantum computers have grown from

mere intellectual curiosity to realistic not-too-distant future technology. With massive

investments in the field, the prospect of a crypto-breaking scale quantum computer is

now a serious threat to security. Entities have already started to intercept and store

scary amounts of encrypted communications, in the hope to one day decipher them

when the appropriate technology becomes available.

In 2017, the US’s National Institute of Standards and Technology (NIST) releases

a call for post-quantum public-key encryption and signature algorithms, hoping to

find the best algorithms and standardise them. The number of candidates has gone
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down from 69 in Round 1 to 15 in Round 3 in 2020, of which four have been selected

for standardisation in July 2022, and four others made it to Round 4 for further

discussion. This field is still at a very early stage, with new attacks being discovered

regularly. This was illustrated again at the end of July 2022, when a spectacular

attack was released, breaking one of the remaining Round 4 contenders [CD22].

The main propositions for post-quantum cryptography fall in one of the following

categories, of which we give a very brief description:

• Code-based cryptography: uses hard problems related to error-correcting codes.

Correcting errors can be easy for well-chosen codes, but is a difficult problem

for random codes.

• Isogeny-based cryptography: uses hard problems related to isogenies, a special

kind of morphism between elliptic curves. Explicitly computing an isogeny

between elliptic curves defined over finite fields is a difficult problem.

• Hash-based cryptography: uses hash functions, that map strings of arbitrary

size to strings of fixed size. Finding preimages of a given value is difficult.

• Lattice-based cryptography: uses hard problems related to lattices either for

construction or in proofs of security. Finding short vectors in high-dimensional

lattices is difficult.

• Multivariate cryptography: uses systems of multivariate quadratic equations.

Solving these systems without a trapdoor is difficult.

This dissertation focuses on the fourth type: lattice-based cryptography. Three

out of the four algorithms NIST decided to standardise are based on lattices, and

they are widely considered to be the most promising for resisting against quantum

computers. As a disclaimer however, deeper study is of course needed, and it would

be unwise to rely only on one of the above categories.

1.2 This Work

Introduction The most efficient lattice-based schemes in cryptography rely on lat-

tices with additional structure such as ideal lattices, typically lattices corresponding to

ideals in families of rings, say for example Z[X]/(P (X)) where P (X) = X2k +1. One
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of the main examples is the Ring-Learning With Errors (Ring-lwe) scheme, intro-

duced in [SSTX09] and [LPR10]. [LPR10] also proves that the security of Ring-lwe

relies on the worst-case hardness of Ideal-svp: finding short vectors in ideal lattices.

Until 2014 and [CGS14] (see the next section, Section 1.3), no good attack us-

ing that extra structure was known against Ideal-svp-like problems, and the best

attacks were the same as those known for general lattices, only exploiting their ad-

ditive structure. [CGS14] and [Ber14] sketch the idea behind new multiplicative

attacks: unit and S-unit attacks. These attacks are quantum and exploit break-

through results from [EHKS14] and [BS16]. Since then, a series of papers came out

analysing and upgrading first unit attacks and then S-unit attacks: see [CDPR16],

[CDW17], [DPW19], [PMHS19], [BRL20], [CDW21] and [BLNRL21]. It is common

when analysing a lattice to rely on the heuristic assumption that the lattice behaves

like what would be expected from a randomly generated instance.

Recently, Bernstein gave a talk at SIAM21 [Ber21] conjecturing that S-unit attacks

can reach much better complexity than stated in the above string of works. The

talk was later reproduced by Lange at ANTS-XV [Lan22], endorsing the conjecture.

In [BL21] they argue that usual lattice heuristics mentioned above should not be

used for analysing S-unit attacks, and state that this gives a first insight into why the

conjecture is not too far-fetched. However, more evidence would be needed to draw

any meaningful conclusions about the true power of S-unit attacks.

Contributions The primary objective of this dissertation is to give the reader a

good understanding of unit and S-unit attacks, and their place in recent debates in

cryptography. Such a survey has never been done before, as it covers fairly recent

research. Following and generalising ideas from the recent paper by Bernstein and

Lange [BL21], we argue that lattices used in the unit and S-unit attacks can not be

analysed using heuristics that are true for random lattices. This leads us to give a

first formal statement for Bernstein’s conjecture.

Roadmap Chapter 1 is an introduction, including an overview of the soliloquy

scheme in Section 1.3. Chapters 2 and 3 cover the background material on lattices

and number theory respectively, including a presentation of the quantum algorithms

used in the attacks in Section 3.5. In Chapter 4 we discuss the use of structured

lattice in cryptography, and justify why Ideal-svp is so important. In Chapter 5, we

give a brief overview of existing attacks on Ideal-svp, and in Chapter 6 we describe

the unit and S-unit attacks as seen in recent literature, involving reduction in the
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log-unit and log-S-unit lattices. Finally, in Chapter 7, we prove that the log-unit and

log-S-unit lattices do not behave like typical random lattices, and finally we state

Bernstein’s conjecture.

1.3 Soliloquy

To provide the reader with a concrete insight into what type of problems this disser-

tation tackles, and for historical reasons, we give a detailed presentation of the solil-

oquy cryptosystem. soliloquy was introduced secretly in 2007 by researchers from

CESG (GCHQ’s old information security arm) as a supposedly quantum-resistant

key-encapsulation mechanism. A key-encapsulation mechanism or KEM is a cryp-

tographic protocol that enables two parties to securely agree on a secret key, that

can later be used for further secure communication. This KEM relies on supposed

quantum hardness of some structured lattice problem, for which no attack better

than those already known for general lattice problems were known. In 2014, the same

team of researchers simultaneously make soliloquy public and sketched a full key-

recovery attack against it in [CGS14], involving a quantum algorithm. This paper is

famously entitled ”soliloquy: A Cautionary Tale”, and is the first known example

of an attack on structured lattices that really uses the extra algebraic structure. It

follows from breakthrough paper [EHKS14] describing new quantum algorithms for al-

gebraic number theory, and the attack is very quickly made fully rigorous in [CDPR16]

and [BS16]. Here is how it goes (the less experienced reader may want to consider

reading Chapters 2 and 3 first).

Background maths: K denotes the cyclotomic field Q(ζn) where n is a (small)

prime number of size about 10 bits, and ζn = exp
(
2iπ
n

)
is a primitive n-th root of

unity. Its ring of integers is OK = Z[ζn]. For p a (larger) prime number such that

p ≡ 1 mod n, the principal ideal (p) = pOK decomposes into a product of prime

ideals of norm p:

pOK =
n−1∏
i=1

pi. (1.1)

The pi’s are permuted by the Galois group Gal(K/Q) ∼= (Z/nZ)×. This and more can

be seen as a consequence of a theorem of Dedekind, exposed in [ST02], Theorem 10.1.

To get the decomposition of (p) we thus need to look at the factors of the minimal

polynomial Φn = Xn−1
X−1

of ζn modulo p. Because n divides p − 1, the values b
p−1
n

for b ∈ (Z/pZ)× give n n-th roots of unity modulo p, are distinct and the splitting
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field for Φn is just Fp. Now Equation 1.1 follows and we also get that each of the

n − 1 non-trivial roots of unity mod p can be associated with one of the pi. More

precisely, pi = (p, ζn − ci) for ci such a n-th root. Heuristically for a random choice

of p, we expect c = 2
p−1
n to be non-trivial with probability approximately (1 − 1

n
)),

which means we can usually focus on the following factor p = (p, ζn − c).

Key Generation: From a fixed n, Alice generates a candidate key element

α =
n∑

i=1

aiζ
i
n ∈ OK ,

where the coefficients ai are sampled according to a discrete Gaussian distribution of

mean 0 and width σ. The ideal (α) is in fact a lattice with lots of structure, as it can

be represented by the following short basis.
a1 a2 . . . an−1 an
an a1 . . . an−2 an−1
...

...
. . .

...
...

a3 a4 . . . a1 a2
a2 a3 . . . an a1


To continue with the key generation procedure, Alice computes

p = N (α) =
∏

σ∈Gal(K/Q)

σ(α),

and ensures that p is prime and c = 2
p−1
n is not the trivial root of unity mod p, else

she generates a new α. Note that from the definition of p, p ≡ 1 mod n follows and

the previous paragraph can be used freely, with the same notations. Our condition

on c ensures that (α) is one of the factors pi, and by taking the right Galois conjugate

(there are not too many to choose from anyways as n is not big), Alice can force

(α) = p. She keeps α as her secret key, and releases p as her public key. The public

key p contains all the information to recover the ideal p, effectively acting as a bad

basis of the ideal lattice generated by α.

Encryption: The ideal p has norm p so OK/p ∼= Fp. This induces a natural homo-

morphism
ψ : OK → Fp

n∑
i=1

eiζ
i
n 7→

n∑
i=1

eic
i mod p

.
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The objective of the KEM is for Alice and Bob to securely share a key. The function

ψ will be used for encapsulating a randomly chosen key from OK . Bob generates a

key

ε =
n∑

i=1

eiζ
i
n ∈ OK

by sampling the coordinates ei from a discrete Gaussian distribution with mean 0

and variance σ′. Because of how it was generated, ε is a short element of OK . Bob

then sends z = ψ(ε) ∈ Fp to Alice.

Decryption: Suppose as in the Encryption paragraph that Bob has generated a

key ε =
∑n

i=1 eiζ
i
n ∈ OK , and has sent z = ψ(ε) to Alice. She would like to recover

ε from its image z ∈ Fp. This equates to recovering the right coset in the quotient

OK/p. As ε ∈ z+αOK and ε is short, Alice must solve an instance of the cvp in the

ideal lattice αOK (see sections 2.2 and 3.3). Given that she knows a short basis α

for the ideal, she can use Babai’s round-off algorithm to do exactly that. This simply

means that

ε = z − ⌈zα−1⌋ · α,

provided ε was initially chosen small enough, and where ⌈·⌋ denotes coordinate-

wise rounding to the nearest integer. For a proper proof of correctness, see Smart

and Vercauteren’s Fully-Homomorphic encryption scheme, that uses a similar proce-

dure [SV09]. Alice and Bob now share the randomly generated key ε, and can use it

for other cryptographic purposes.

Discussion: We shall see later why soliloquy is completely broken. In a few

words, note that p, n, c are public, meaning that an attacker can construct the ideal

(α) = (p, ζn−c). Seeing (α) as a lattice, the scheme relies on the fact that it should be

hard for an attacker to find a short basis of this lattice that would enable the rounding

procedure. Here, a complete break would be obtained if an attacker could recover a

shortest generator of the principal ideal (α). Therefore, the supposedly hard problem

is: given a basis of an ideal guaranteed to be principal and have a short generator,

find any short generator of the ideal. This problem is called the Short-Generator

Principal Ideal Problem (sg-pip for short). The guarantee in italic is in fact what

makes soliloquy horribly insecure.
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Chapter 2

Lattice Background

2.1 Basic Facts

Definition 2.1.1. A lattice of L ⊂ Rn is a discrete additive subgroup of Rn.

The word discrete is used here in the context of the usual Euclidean topology,

that is for any point v ∈ L, there exists a small distance ε > 0 such that no u ∈ L
different to v satisfies ∥u− v∥ ≤ ε.

Example 2.1.2. L = Zk for k ≤ n is a lattice of Rn.

Example 2.1.3. The lattices of R are exactly the Z-vector spaces αZ for α ∈ R≥0.

It is important in computer science to know how to represent a lattice. Even

though lattices usually have countably many elements, it is sufficient to know a Z-
basis.

Proposition 2.1.4. Let L be a lattice of Rn, then there exists an m ≤ n and m

independent vectors b1, . . . , bm ∈ Rn such that

L =

{
m∑
i=1

xibi | x1, . . . , xm ∈ Z

}
.

In this case we say that B = (b1, . . . , bm) is a basis of L and we use the notations

L(B) or L(b1, . . . , bm) to denote the lattice. Moreover, m is called the dimension of

L, and if m = n, we say that L is full-rank.

Therefore, any full-rank lattice can be represented by the matrix B ∈ GLn(R)
whose columns are (b1, . . . , bn). Reciprocally, given an invertible matrix B ∈ GLn(R),
the set {Bx | x ∈ Zn} defines a full-rank lattice. However, like a vector space has

multiple bases, a lattice has multiple representations:
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Theorem 2.1.5. Let B1, B2 ∈ GLn(R) represent the lattices L(B1),L(B2), then

L(B1) = L(B2) if and only if there exists a matrix U ∈ Zn×n such that det(U) = ±1
and B1 = B2U .

Proof. First suppose L(B1) = L(B2), then columns of B1 are in L(B2). Therefore

there exists a matrix U1 ∈ Zn×n such that B1 = B2U1. By the same argument,

there exists U2 ∈ Zn×n such that B1U2 = B2. Combining both identities we get

B1U2U1 = B2U1 = B1, from which U2U1 = In. However U1 and U2 are integeral

matrices and thus have integer determinant, but det(U2) det(U1) = 1 so det(U1) = ±1.
Second suppose B1 = B2U with U ∈ Zn×n and det(U) = ±1, then U is invertible and

has inverse U−1 = det(U)−1Co(U)T (where Co(U) is the matrix of cofactors of U).

Co(U) is integral and det(U) = ±1 so U−1 also has integer coefficients. Now since U

is integral, vectors spanned by B1 are spanned by B2, so L(B1) ⊂ L(B2), and since

U−1 is integral, L(B2) ⊂ L(B1), which concludes.

Corollary 2.1.6. The set of full-rank lattices of Rn is GLn(R)/GLn(Z).

Definition 2.1.7. The volume of a lattice L is the absolute value of the determinant

of any basis (b1, . . . , bn) of L:

vol(L) = | det(b1, . . . , bn)|.

This definition is justified by Theorem 2.1.5, as if B1 and B2 are two bases for

L, then there exists U ∈ Zn×n such that | det(U)| = 1 and B1 = B2U , whence

| det(B1)| = | det(B2)|.

2.2 Finding Short Vectors

We have seen that all lattices have multiple possible bases. While they all consist of

the same number of elements, some of them are better for different reasons. Picture

the lattice Zn, it is very easy to decompose any x ∈ Zn as a linear combination of the

canonical basis vectors, however this problem looks much harder if we have a basis

consisting of only vectors that roughly point in the same direction. This justifies why

from the point of view of a computer scientist (or a cryptographer), one would prefer

knowing a basis consisting of only orthogonal vectors. In dimensions two and above,

an orthogonal basis does not usually exist, so instead, we look for very small vectors.

Geometrically, the smallest vectors are usually close to orthogonal. This is the reason

why ultimately, our goal is to look for short vectors, so that we can understand the

lattice with as little computing time as possible.
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Definition 2.2.1. For the Euclidean norm, the shortest non-zero vector of a lattice

L of dimension n ≥ 1 exists and its norm is denoted λ1(L).

Proof. dim(L) ≥ 1 so there exists a non-zero vector u ∈ L. The set defined by

{v ∈ L | 0 < ∥v∥ ≤ ∥u∥} is compact, discrete and non-empty, therefore it is finite

and has a minimum, λ1(L). Note that the vector that reaches the minimum is not

unique, for exemple, if u is a shortest vector, then so is −u.

This leads us to consider the following algorithmic problems, relatively to the

Euclidean norm (see [Ngu10] for a more precise overview):

Problem 2.2.2 (Shortest Vector Problem (svp)). Given a basis of a lattice L, find
a nonzero vector u ∈ L such that ∥u∥ = λ1(L).

Problem 2.2.3 (Approximate Shortest Vector Problem (γ-svp)). Given a basis of a

lattice L and an approximation factor γ ≥ 1, find a non-zero vector u ∈ L such that

∥u∥ ≤ γλ1(L).

Problem 2.2.4 (Closest Vector Problem (cvp)). Given a basis of a full-rank lattice

L ⊂ Rn and a point v ∈ Rn, find a vector u ∈ L such that ∥u− v∥ = dist(v,L).

Proof of existence of the closest vector can be adapted from the proof of existence

of the shortest vector.

Problem 2.2.5 (Approximate Closest Vector Problem (γ-cvp)). Given a basis of a

full-rank lattice L ⊂ Rn, a point v ∈ Rn and an approximation factor γ ≥ 1, find a

vector u ∈ L such that ∥u− v∥ ≤ γ dist(v,L).

svp was first proved to to be NP-hard for randomised reductions [Ajt98], and

later [Mic01] proved that γ-svp for any γ <
√
2 is NP-hard. Clearly, cvp is a

generalisation of svp, and the approximation problems 1-svp and 1-cvp are exactly

the search problems svp and cvp respectively. Moreover, [GMSS99] proves that any

hardness for svp implies the same for cvp. This makes svp and cvp very natural

choices for the design of cryptosystems.

A practical method for finding short vectors in lattices is the Lenstra-Lenstra-

Lovász algorithm (LLL). LLL solves γ-svp in polynomial time for an exponential

(in the dimension of the lattice) approximation factor. In what follows we present

the algorithm and its correctness. For the analysis of the runtime and insight on

the importance of this algorithm across mathematics and computer science, see the

original paper [LLL82] and the survey book [NV09]. We first recall the Gram-Schmidt

orthogonalisation process, where ⟨·, ·⟩ denotes the Euclidean scalar product.
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Definition 2.2.6. The Gram-Schmidt orthogonalisation of n linearely independant

vectors (b1, . . . , bn) is defined by b⋆i = bi −
∑i−1

j=1 µi,jb
⋆
j , where µi,j =

⟨bi,b⋆j ⟩
∥b⋆j∥2

.

This process generates a new orthogonal basis by successively projecting each

vector orthogonally to the space spanned by the previously obtained vectors.

Definition 2.2.7. Let 1
4
< δ < 1, a basis B = (b1, . . . , bn) ∈ Rn is δ-reduced if the

following points are true:

1. ∀1 ≤ i ≤ n, j < i, |µi,j| ≤ 1
2
;

2. ∀1 ≤ i ≤ n, δ∥b⋆i ∥2 ≤ ∥µi+1,ib
⋆
i + b⋆i+1∥2

To understand this definition, we can look at B in the Gram-Schmidt basis and

we get 
∥b⋆1∥ µ1,2∥b⋆1∥ . . . µ1,n∥b⋆1∥
0 ∥b⋆2∥

...
...

. . .

0 . . . ∥b⋆n∥

 ,

where the first condition says that the off-diagonal coefficients are less than a half of

the corresponding diagonal coefficient on the row; and the second that when looking

at the 2× 2 submatrices on the diagonal, the norm of their second column is δ-close

to the norm of their first.

Proposition 2.2.8. Let B = (b1, . . . , bn) be a δ-reduced basis for a 1
4
< δ < 1, then

∥b1∥ ≤
(

2√
4δ − 1

)n−1

λ1(L(B)).

If δ = 3
4
, this gives ∥b1∥ ≤ 2

n−1
2 λ1(L(B)).

Proof. First we get from condition (2) in the definition of a δ-reduced basis that

∀1 ≤ i ≤ n, (δ − µ2
i+1,i)∥b⋆i ∥2 ≤ ∥b⋆i+1∥2. Combining with condition (1) and iterating:

∥b⋆n∥2 ≥
(
δ − 1

4

)
∥b⋆n−1∥2 ≥ . . . ≥

(
δ − 1

4

)n−1

∥b⋆1∥2 =
(
δ − 1

4

)n−1

∥b1∥2,

from which

∥b1∥ ≤
(
δ − 1

4

)n−1
2

min
i
∥b⋆i ∥.
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We finally prove that λ1(L(B)) ≥ mini ∥b⋆i ∥, which concludes: let u ∈ L(B) be a

nonzero lattice vector, then there exists a 1 ≤ k ≤ n and integers (ai)1≤i≤k with

ak ̸= 0 such that u =
∑k

i=1 aibi. So

u =
k∑

i=1

ai

(
b⋆i +

i∑
j=2

µi,jb
⋆
j

)
= akb

⋆
k + S,

with ⟨b⋆k, S⟩ = 0. Hence ∥u∥ = ∥akb⋆k∥ + ∥S∥ ≥ ∥b⋆k∥. From this we have our

conclusion.

This proposition means that from a δ-reduced basis, we get an exponential solution

to γ-svp. We now present LLL itself in Algorithm 1.

Algorithm 1: The Lenstra-Lenstra-Lovász algorithm, with parameter δ ∈
(1/4, 1)

input : Basis (b1, . . . , bn) ∈ Rn

output: A δ-reduced basis of L(B)
1 Gram-Schmidt process;
2 Compute b⋆1, . . . , b

⋆
n;

3 Reduction phase;
4 for i← 2 to n do
5 for j ← i− 1 to 1 do
6 bi ← bi − ⌈⟨bi, b⋆j⟩/∥b⋆j∥2⌋bj;

7 Swap phase;
8 if ∃i s.t. δ∥b⋆i ∥2 ≤ ∥µi+1,ib

⋆
i + b⋆i+1∥2 then

9 bi ↔ bi+1;
10 Go back to Reduction phase;

11 Output (b1, . . . , bn);

Here ⌈·⌋ denotes rounding to the nearest integer.

Lemma 2.2.9. If LLL terminates, it produces a δ-reduced basis.

Proof. Condition (2) is clearly satisfied as it is directly taken care of by the swap

phase. The basis remains a basis as it is only modified through transvections and

swaps. Its Gram-Schmidt orthogonalisation also stays the same throughout. Remains

to prove that the reduction phase ends with all |µi,j| ≤ 1
2
. Let i > j and look at the

step i of the first loop, step j of the second. The algorithm is designed to subtract

column j to column i enough times to small off-diagonal terms, in fact we have

|µi,j| = ∥b⋆j∥−2

∣∣∣∣〈bi − ⌈⟨bi, b⋆j⟩∥b⋆j∥2

⌋
bj, b

⋆
j

〉∣∣∣∣ = ∣∣∣∣⟨bi, b⋆j⟩∥b⋆j∥2
−
⌈⟨bi, b⋆j⟩
∥b⋆j∥2

⌉ ⟨bj, b⋆j⟩
∥b⋆j∥2

∣∣∣∣ ≤ 1

2
,

11



where we used the projection identity ⟨bj, b⋆j⟩ = ⟨b⋆j , b⋆j⟩ = ∥b⋆j∥2. Therefore, after step
(i, j) condition (1) is and stays valid, and the concludes our proof.

We will later see in section 5.1 how LLL can be generalised to allow for a better

approximation factor in γ-svp.

An approach for solving γ-cvp is the following.

Definition 2.2.10 (Dual basis). Let B = (b1, . . . , bn) be a basis of Rn. The basis

B∨ = (b∨1 , . . . , b
∨
n) where ⟨b∨i , bj⟩ = δij is called the dual basis of B. δij is the Kronecker

symbol of i, j.

Definition 2.2.11 (Babai’s Round-off algorithm). Let L(B) be a lattice of Rn, and

v ∈ Rn a target vector, return B · ⌈(B∨)T · v⌋, where here ⌈·⌋ denotes rounding of

each coordinate to the nearest integer.

The following fact is standard and tells us when the round-off algorithm works.

Proposition 2.2.12. Let B = (b1, . . . , bn) be a basis of Rn, and let v = u + e ∈ Rn

for some u ∈ L(B) and e ∈ Rn. Suppose 1
2
≤ ⟨b∨j , e⟩ < 1

2
for all j ∈ {1, . . . , n}. Then

Babai’s round-off algorithm with input (B, v) outputs u.

Proof. u ∈ L(B) so there exists a z ∈ Zn such that u = Bz. The product (B∨)TB is

the identity matrix so multiplying v = u + e by (B∨)T gives (B∨)Tv = z + (B∨)T e.

Moreover, the coordinates of (B∨)T e are ⟨b∨j , e⟩, therefore the round-off algorithm

outputs B · ⌈(B∨)Tv⌋ = Bz = u.

Another slightly more expensive way to solve γ-cvp is Babai’s nearest plane al-

gorithm, presented in Algorithm 2.

Algorithm 2: Babai’s nearest plane algorithm

input : Basis B = (b1, . . . , bn) ∈ Rn, target vector v ∈ Rn

output: A vector u ∈ L(B) close to v.
1 Compute b⋆1, . . . , b

⋆
n;

2 Run LLL on B with δ = 3
4
;

3 w ← v;
4 for i← n to 1 do
5 w ← w − ⌈⟨w, b⋆i ⟩/⟨b⋆i , b⋆i ⟩⌋bi;
6 Output u = v − w;

12



Lemma 2.2.13. Algorithm 2 with input lattice L(B) and target v ∈ Rn terminates

in polynomial time and outputs a vector u ∈ L that satisfies

∥u− v∥2 ≤ 1

4

n∑
i=1

∥b⋆i ∥2.

Proof. The runtime is just the runtime of LLL, followed by a linear loop. Therefore

the total runtime is polynomial. Now each step i of the loop ensures that the i-th

coordinate of w is smaller than 1
2
∥b⋆i ∥2 by the rounding process. Therefore

∥u− v∥2 = ∥w∥2 ≤ 1

4

n∑
i=1

∥b⋆i ∥2.

With a bit more work we can prove that Babai’s nearest plane algorithm solves

2
n
2 -cvp. See [Bab86] for the original analysis.

2.3 Random Lattices

In order to work with lattices in practice it would be nice to have a way to generate

random instances. However it is not an easy task to randomly sample integers. In this

subsection, we prove the remarkable fact that there exists a canonical way to choose

lattices of Rn with fixed determinant at random. This is a result from Siegel [Sie45],

whose proof can be skipped on a first read.

Theorem 2.3.1. There exists a unique probability measure µ on the space

SLn(R)/ SLn(Z),

invariant by SLn(R), ie such that for all M ∈ SLn(R) and S ⊂ SLn(R)/ SLn(Z),
µ(MS) = µ(S).

Proof. SLn(R) is a locally compact Hausdorff topological group, and therefore there

exists a unique (up to a positive multiplicative constant) Haar measure. The measure

we are looking for on determinant-1 lattices is essentially a projection of the Haar

integral on SLn(R) with the correct normalisation factor. In order to prove it passes

well to the quotient and is unique there, we need to introduce a bit of theory on

topological groups. If G is a locally compact Hausdorff group, µ a left-invariant Haar

measure on G and g ∈ G, then the map E 7→ µ(Eg) defined on the Borel sets on

13



G also defines a left-invariant Haar measure on G. By unicity up to a scalar, there

exists a constant ∆G(g) such that

µ(Eg) = ∆G(g)µ(E)

for all E. This defines the group homomorphism ∆G : g ∈ G 7→ ∆G(g) ∈ R>0, called

the modular function of G. If ∆G is identically 1, G is said to be unimodular. In

particular, discrete groups are always unimodular. We need the following Theorem:

Theorem 2.3.2. Let G be a locally compact Hausdorff group, and H a closed subgroup

of G. Then a left G-invariant Haar measure on G/H is unique up to positive scalar

multiples, and exists if and only if

∆G(h) = ∆H(h)

for all h ∈ H.

Proof. See [AM07], Theorem 2.3.5.

SLn(Z) is a discrete closed subgroup of SLn(R), therefore it is unimodular. We

will now show that (1) SLn(R) is unimodular, and that (2) There is a set F of finite

Haar measure such that F · SLn(Z) = SLn(R). From (1), using Theorem 2.3.2 we

get existence and uniqueness up to a scalar multiple of the invariant measure on

SLn(R)/SLn(Z); and from (2) we get that we can normalise said measure into a

unique invariant probability measure.

Proof of (1): Given A and B topological groups with left Haar measures da and

db respectively, the product da × db on A × B is a left-invariant measure that has

to be the Haar measure. Moreover, the modular function of A × B is the product

of the modular functions of A and B. The Haar measure on GLn(R)+, real matrices

with positive determinants is unimodular and given by dµ(g) = dg
(det g)n

, so the Haar

measure on R>0 is dµ(g) = dg
g
and unimodular by taking n = 1. By the topological

group isomorphism GLn(R)
+ → SLn(R) × R>0, we deduce that SLn(R) is in fact

unimodular.

Proof of (2): We first prove that SLn(R) = S 2√
3
, 1
2
· SLn(Z) where S 2√

3
, 1
2
refers to a

Siegel set, defined as follows:

Definition 2.3.3 (Siegel set). Let A > 0 and B > 0, the Siegel set SA,B is the set of

elements g ∈ SLn(R) such that if g = kau is the Iwasawa decomposition of g,

∀1 ≤ i < j ≤ n :
ai
ai+1

≤ A and |uij| ≤ B,

where the Iwasawa decomposition refers to the following:

14



Proposition 2.3.4 (Iwasawa decomposition). Let g ∈ SLn(R), then there exists a

unique decomposition

g = kau,

where k ∈ SOn(R), a is a diagonal matrix with determinant 1 and positive entries,

and u is upper triangular with only 1’s on the diagonal.

Proof. From (v1, . . . , vn) the columns of g, derive ũ = (ṽ1, . . . , ṽn) and ã diagonal from

the Gram-Schmidt orthonormalisation process such that gũã is orthonormal, where ũ

is upper triangular with 1’s on the diagonal, and ã must have determinant 1. Define

k = gũã, u = ũ−1 and a = ã−1 to conclude.

We will need the following lemma:

Lemma 2.3.5. Let L ⊂ Rn be a lattice, then there exists a basis v1, . . . , vn of L such

that

∀2 ≤ i ≤ n, ∥v′i∥2 ≥
3

4
∥v2i−1∥,

where v′i denotes the orthogonal projection of vi on ⟨v1, . . . , vi−1⟩⊥.

Proof. Apply LLL with parameter δ = 3
4
.

We can now prove that any g ∈ SLn(R) can be pushed into the fundamental

domain S 2√
3
, 1
2
by multiplication by an element of SLn(Z). Fix a g ∈ SLn(R), it

corresponds to a lattice of Rn with basis the columns of g. By Lemma 2.3.5 there

exists a basis (v1, . . . , vn) of L such that for 2 ≤ i ≤ n we have

∥v′i∥2 ≥
3

4
∥v2i−1∥.

Therefore there is a α ∈ SLn(Z) such that gα corresponds to this new basis. Looking

at its Iwasawa decomposition gα = kav with for 2 ≤ i ≤ n,

ai−1

ai
=
∥v′i−1∥
∥v′i∥

≤ ∥vi−1∥
∥v′i∥

≤
√

4

3
=

2√
3
.

We can then choose a β ∈ SLn(Z) in a way that all off-diagonal coefficients of u = vβ

satisfy |uij| ≤ 1
2
for all i < j. Thus

g(αβ) ∈ S 2√
3
, 1
2
,

proving the first part of (2). In order to complete the proof of (2), we show that Siegel

sets have finite measure for the Haar measure on SLn(R). For g = kau in SLn(R),
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using unimodularity and Theorem 2.3.2, [Lan85] Chapter 3 paragraph 1 proves that

the Haar measure on SLn(R) is given by

dg = (dk)(du)(da)

where dk is the Haar measure on SOn(R), du on the group of upper triangular matrices

with 1’s on the diagonal, and da on positive diagonal matrices of determinant 1. Note

that da and du are reversed compared to the usual decomposition. This accounts for

an extra factor
∏

i<j
ai
aj

obtained by looking at the decomposition k(aua−1)a instead

of kau. SOn(R) is compact so it has finite measure, so is the set of upper triangular

matrices of R with 1’s on the diagonal and coefficients in [−B,B] (here we had B = 1
2
),

therefore we must compute the measure of the center factor, which is:∫
ai

ai+1
≤A

(∏
i<j

ai
aj

)
da1
a1

. . .
dan−1

an−1

.

Using the change in variable ti = ai
ai+1

for 1 ≤ i < n, and using that for i < j
ai
aj

=
∏j−1

k=i
ak

ak+1
, there exists non-negative integers mi such that the center factor

becomes ∫
ti≤A

tm1
1 . . . t

mn−1

n−1 dt1 . . . dtn−1 =
n−1∏
i=1

∫ A

0

tmidt.

This is finite, and so SLn(R)/SLn(Z) has finite measure, and this completes the

proof.

This invariant measure is very nice in theory, but less so for experimental purpose.

One way to work around this difficulty is to look at generation of random integer lat-

tices. Given integers V and n, there are finitely many n-dimensional lattices with

volume V . [GM03] proves that sampling uniformly at random one of these integer

lattices, and then rescaling it by V 1/n converges asymptotically with V towards the in-

variant measure for volume 1 real lattices. As explained in the first section of [GM03],

this sampling process is particularly simple when V is a prime number.

2.4 Gaussian Heuristic

Studying the behaviour of random lattices is interesting, as it provides heuristic guid-

ance as to what we can assume when we encounter a lattice. Assuming our lattice L
can be taken at random, this gives tools for estimating quantities such as the length

λ1(L), the number of points in L∩X for a well-behaved set X, and this can be used

for analysing how well some lattice reduction algorithms such as LLL perform. The
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main assumption used time and time again in the literature and referred to as the

Gaussian heuristic can be stated as follows:

Heuristic 2.4.1 (Gaussian heuristic). Given a lattice L and a ”well-behaved” set X,

the Gaussian Heuristic predicts the number of points in L ∩X to be

#(L ∩X) ≈ vol(X)

vol(L)
,

where ”well-behaved” usually means Borel-measurable and convex.

It is important to note that this is just a heuristic, and in some cases is very

far from the truth. It can be made more precise and/or more rigorous, but most

of the time is stated as is. [BL21], Section 1.6 criticises heavily the frequent lack of

clarity in the literature around defining and using the heuristic. Instead, it proposes

the Spherical model of a lattice, as a way to model the lattice that disregards any

additive structure and only keeps information about its dimension and volume.

Definition 2.4.2 (Spherical model, [BL21] Definition 3.3). Let L be a dimension n

lattice. For j ∈ N>0, let µj be a uniform random element of{
x ∈ spanR(L) | ∥x∥n = 2jπ−n

2Γ
(n
2
+ 1
)
vol(L)

}
;

then the set {0} ∪ {±µj | j ∈ N>0} is a spherical model of L. Γ denotes the usual

Gamma function for which Γ(k) = (k − 1)! when k is a positive integer.

In order to explain where this model comes from, we need to know the volume of

a ball.

Definition 2.4.3. Let d ∈ N and r ∈ R>0. The d-dimensional ball of radius r is

defined as

rBd = {x ∈ Rd : ∥x∥n ≤ r}.

Lemma 2.4.4. Let d ∈ N and r ∈ R>0. The d-dimensional volume of rBd is

vol(rBd) =
rdπ

d
2

Γ(d
2
+ 1)

.

Proof. This is a standard result, obtained by integration.

From Lemma 2.4.4 and Definition 2.4.4, one can verify that the Gaussian heuristic

holds for X = rBd, and this justifies the spherical part. In a Spherical model,

the length of the shortest non-zero vector µ1 is fixed directly by the dimension and

volume of the lattice. It is not unjustified to do so, because of the following result

from [Rog56].
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Figure 2.1: λ1 in random lattices vs Gaussian heuristic prediction

Theorem 2.4.5 ([Rog56], Theorem 3). Let X be any Borel set in dimension n, with

measure vol(X). The distribution of the number of (non-zero) pairs of points ±x
of a lattice L in X, where L is sampled according to the invariant distribution has

asymptotic distribution the Poisson distribution of parameter 1
2
vol(X).

In a Gaussian Heuristic setting, one would sometimes argue that this behaviour is

the expected behaviour, and therefore it can be applied to any lattice, heuristically.

But why does this justify Definition 2.4.2?

The mean of a Poisson distribution is its parameter, therefore in order for the mean to

be exactly one (this corresponds to the minimal non-zero vector) when a volume-one

lattice L of dimension n intersects a ball of radius r, from Lemma 2.4.4, we would

need 1
2

rnπn/2

Γ(n/2+1)
= 1, so r = (2π−n/2Γ(n/2 + 1))1/n. Obviously this equality is not

rigorous, however it can be proven with this Poisson setting that

λ1(L) =
(
1 +O

(
n

log(n)

))(
2π−n

2Γ
(n
2
+ 1
))1/n

with probability 1− o(1) when n→∞ (see this as a consequence for balls of [SS16],

Theorem 1.1). After scaling by vol(L) in the general case, we get a justification for

the minimal length of a spherical model.
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Lemma 2.4.6. The length of the minimal non-zero vector in a spherical model of a

lattice of volume vol(L) in dimension n is asymptotically equal to√
n

2πe
vol(L)

1
n

when n→∞.

Proof. Given a spherical model of L, clearly, minj ∥µj∥ = ∥µ1∥. From Stirling’s

formula for the gamma function,

Γ(n/2 + 1) ∼
√

2π
n

2

(
n/2

e

)n
2

,

from which we deduce for n→∞

∥µ1∥ = 2−
1
nπ− 1

2Γ
(n
2
+ 1
)− 1

n
vol(L)

1
n

∼ 2−
1
nπ− 1

2 (πn)−
1
2n

√
n

2e
vol(L)

1
n

∼
√

n

2πe
vol(L)

1
n

Figure 2.1 compares the value of λ1 predicted by the Gaussian heuristic with the

actual length of the shortest vector for 100 randomly sampled lattices of dimension

n for all n ∈ {10, . . . , 40}. All lattices are sampled using the method described at

the end of Section 2.3, with 200-bit primes. This confirms that even for fairly small

dimensions, the Gaussian heuristic is accurate in predicting the size of the shortest

vector. Experiments were conducted with SageMath [The22].

In Chapter 7, we will apply predictions from Gaussian heuristic/Spherical models

to the log-unit and log-S-unit lattices (see Chapter 3 for definitions).
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Chapter 3

Number Theory Background

LetK denote a number field of degree n over Q, and OK its ring of integers, ie the ring

of algebraic integers contained inK. Given an element α ∈ K, the algebraic trace and

norm of α are the trace and determinant of the multiplication-by-α endomorphism

x 7→ αx of K, seen as a Q-vector space. The trace is denoted Tr(α) and the norm

N (α). For any Z-basis (ω1, . . . , ωn) of OK , the value of det (Tr(ωiωj))i,j is the same

and is called the discriminant of K, denoted ∆K . Loosely speaking, |∆K | measures

the size of the number field, and for this reason most complexities in computational

algebraic number theory depend on ln |∆K |. Units inOK are the groupO×
K of elements

of OK that have norm 1.

3.1 Cyclotomic Number Fields

Let ζn = exp(2iπ/n), the first primitive n-th root of unity. We define the n-th

cyclotomic field as the number field Q(ζn).

Proposition 3.1.1. Let K = Q(ζn) be the n-th cyclotomic field, with ring of integers

OK, and let m = φ(n) = #{1 ≤ k < n | gcd(k, n) = 1}. Then the following hold:

1. [K : Q] = m,

2. Gal(Q(ζn)/Q) ∼= (Z/nZ)× ∼= (Z/mZ),

3. OK = Z[ζn],

4. For n > 2, ∆K = (−1)m/2 nm∏
p|n pm/(p−1) .

Proof. These are all standard facts. See for example Chapter 2 of the book [Was97].
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A number field K of degree n over Q has n embeddings (injective field homomor-

phisms in C). r1 are real embeddings, and 2r2 are complex embeddings, and they

come in conjugate pairs. In total, n = r1 + 2r2. For example in the cyclotomic case,

Q(ζn) is Galois over K so r1 = 0 and r2 =
φ(n)
2
.

Theorem 3.1.2 (Dirichlet’s unit theorem). The group of units in the ring OK of a

number field K is finitely generated and has rank r = r1 + r2 − 1, where r1 is the

number of real embeddings of K and r2 the number of pairs of conjugate complex

embeddings of K.

Proof. See [Koc00], section 2.9.

In particular, in the cyclotomic case we get that Z[ζn]× is finitely generated of

rank φ(n)
2
− 1.

Definition 3.1.3 (Cyclotomic units). Let n ̸≡ 2 mod 4 and K = Q(ζn) be the n-th

cyclotomic field. The group of cyclotomic units is defined by

CK = (−1)ZζZn (1− ζn)Z(1− ζ2n)Z . . . (1− ζn−1
n )Z ∩ O×

K .

Cyclotomic units are a chunk of the units of cyclotomic number fields that we

understand well. In the prime-power case, they come with satisfying structure.

Lemma 3.1.4. Suppose n = pk with p prime and K = Q(ζn). Then the group CK of

cyclotomic units is generated by (−1), ζn, and the units

bj =
1− ζjn
1− ζn

, for 1 < j <
1

2
pk and gcd(j, p) = 1.

Proof. See [Was97], Lemma 8.1 for full details. The idea is to explicitly show that

real cyclotomic units can be written as a product of powers of (−1) and the bj’s, and

then use the fact that in the prime-power case, units can be written as a product of

a real units with a n-th root of unity.

Note that for k = 1, in the prime case, CK is generated by (−1), ζp, and the bj’s

for j ∈ {2, . . . , p−1
2
}.
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3.2 Ideals

An ideal I of OK is an additive subgroup of OK , such that for r ∈ OK and x ∈ I,
rx ∈ OK . An ideal p of OK is said to be prime if it is not OK and if for any a, b ∈ OK

such that ab ∈ p, a ∈ p or b ∈ p. The norm of an ideal a is defined as the index

N (a) = #(OK/a). N (a) is a prime number if and only if a is a prime ideal.

A fractional ideal of OK is a set J ⊂ K such that there exists a non-zero r ∈ OK

such that rJ ⊂ is an ideal of OK . In this case we define its norm by N (J) = N (rJ)
|N (r)| ,

and easily check that this generalises the norm for integral ideals.

Proposition 3.2.1. The set IK of fractional ideals of OK is an abelian group, with

identity OK.

A fractional ideal is said to be principal if it can be generated by a single element.

In this case for an element g ∈ K we denote by (g) the principal ideal generated by

g. The set of principal ideals of OK is denoted PK . In number fields, we have the

following theorem that generalises factorisation of rational numbers:

Theorem 3.2.2. Any fractional ideal a ∈ IK can be factored uniquely up to reordering

into

a = (p1 . . . pr)(q1 . . . qs)
−1,

where p1, . . . , pr, q1, qs are prime (integral) ideals of OK.

If u ∈ O×
K , the ideal (u) is just OK .

Definition 3.2.3 (S-units). Let S be a finite set of prime ideals. We say that s ∈ K
is an S-unit if and only if the principal fractional ideal (s) it generates can be written

as a product of prime ideals of S using positive or negative powers. Formally, if

S = {p1, . . . , pk}, s is an S-unit if and only if there exists exponents (e1, . . . , ek) ∈ Zk

such that (s) =
∏k

i=1 p
ei
i .

The set of S-units forms a group that we note O×
K,S, and by Dirichlet’s unit

theorem, it is finitely generated of rank r+ k, where r is the rank of O×
K and k is the

number of elements in S.
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3.3 Lattices in Number Fields

Ideals as Lattices Recall that a number field of degree n over Q comes with n

embeddings: r1 real and r2 pairs of complex embeddings. In the order we write them

σ1, . . . , σn. If K = Q[X]/⟨P ⟩ with P a degree n irreducible polynomial, then any

element of K can be written as a linear combination of (1, X, . . . , Xn−1). We can

always switch from one representation of K to another by going from Q adjoin a

root of the polynomial, to Q[X] quotiented by the minimal polynomial of the element

we adjoin by. The other roots of this polynomial correspond to the images via the

embeddings of adjuncted element. This enables us to define two maps from K:

• The coefficient embedding:

Σ : K → Rn∑n−1
i=0 aiX

i 7→ (a0, . . . , an−1)
;

• The canonical or Minkowski embedding:

σ : K → Rr1 × Cr2

x 7→ (σ1(x), . . . , σr1+r2(x))
;

where in the case of σ we can also consider it from K to Rr1 ×R2r2 by separating

real and imaginary parts of the complex embeddings. With this in mind, we have the

following proposition, that justifies why we can freely identify ideals to lattices.

Proposition 3.3.1. Let a be a fractional ideal of OK, then Σ(a) and σ(a) are both

full-rank lattices of Rn. Moreover, we have vol(a) = N (σ(a))
√
|∆K |.

Proof. See the classic textbook [ST02], Chapter 8 and Theorem 9.4.

All notations for lattices extend to ideals via the canonical embedding, for example

λ1(a) now denotes the length of the smallest non-zero vector in the lattice σ(a), and

∥x∥ for x ∈ K denotes the Euclidean norm of σ(x). It is worth explaining why we

choose to look at the lattice from σ and not Σ. In fact, both embeddings have a very

similar geometry so the distinction is only minor: on the one hand the coefficient

embedding is much better for easy and efficient implementation, and on the other

hand the canonical embedding is much more natural from a mathematical standpoint.

The following proposition will be useful:

Proposition 3.3.2. Let a be an ideal of OK where K is a cyclotomic number field

of conductor n, then

1

poly(n)
N (a)

1
n ≤ λ1(a) ≤ poly(n)N (a)

1
n .
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Proof. Using Minkowski’s first theorem, we get that for any lattice L of dimension n,

λ1(L) ≤
√
n(vol(L)) 1

n . Combining this with the fact that vol(σ(a)) = N (a)
√
|∆K | as

in Proposition 3.3.1 and with point (4) of Proposition 3.1.1 we get the desired upper

bound. For the lower bound we use that if x ∈ a, (x) is a sublattice of a so N (a)

must divide |N (x)| meaning that |N (x)| ≥ N (a). Therefore

N (a)2 ≤ N (x)2 =
n∏

i=1

σi(x)
2 ≤

(∑n
i=1 σi(x)

2

n

)n

=
∥x∥n

nn
,

where we used the inequality between the arithmetic and geometric means. Taking

x ∈ a such that ∥x∥ = λ1(a) proves the left inequality.

Auxiliary Lattices Recall from Theorem 3.1.2 that the unit and S-unit groups

are finitely generated, therefore their logarithms should form some sort of lattice.

The crucial step in the algorithms we aim to describe searches for units (or S-units)

close to a given point in K. In order to turn this step into a closest vector problem

instance, we need to formally define these lattices. First we define the set of infinite

place S∞ = {σ1, . . . , σr1+r2} to be all embeddings of K up to conjugation. [Kσ : R] is
1 if σ is a real embedding, 2 otherwise.

We define the following embeddings, with k = #S:

• The Log-embedding:

Log : K → Rr1+r2

α 7→ ([Kσ : R] · ln |σ(α)|)σ∈S∞
;

• The Log-S-embedding:

LogS : K → Rr1+r2+k

α 7→ (Log(α), {− ordp(α) · ln(N (p))}p∈S)
;

where ordp(α) is the number of times (positive or negative) that p divides (α).

In the first case, we can see that for α ∈ K, the sum Σ of the coordinates of

Log(α) is

Σ =

r1∑
i=1

ln |σi(α)|+
r2∑
j=1

2 ln |σj(α)|

= ln |N (α)|,

so that the image Log(O×
K) of all elements with norm 1 is contained in the hyperplane

of Rr1+r2 defined by

Hr1+r2
0 = {(x1, . . . , xr1+r2) ∈ Rr1+r2 | x1 + . . .+ xr1+r2 = 0}.
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Recall from Dirichlet’s unit theorem that O×
K is finitely generated of rank r1+ r2− 1,

therefore, Λ = Log(O×
K) is in fact a lattice of Rr1+r2 , that spans exactly Hr1+r2

0 when

seen as an R-vector space. This lattice Λ is called the log-unit lattice.

In a similar fashion, if α =
∏

pi∈S p
ei
i , then the sum ΣS of the coordinates of

LogS(α) is

ΣS =

r1+r2∑
i=1

[Kσi
: R] ln |σi(α)|+

k∑
j=1

(− ordpj(α) ln(N (pj))

= ln |N (α)| − ln

(∏
p∈S

N (p)ordp(α)

)
= 0,

so LogS(O×
K,S) is a lattice of Rr1+r2+k of rank r1+r2+k−1, contained in and spanning

Hr1+r2+k
0 . This lattice ΛS is called the log-S-unit lattice.

3.4 Class Groups and the Stickelberger lattice

The class group ClK = IK/PK is the quotient of the group of fractional ideals of OK

by the subgroup of principal fractional ideals of OK . Two (fractional) ideals a and

b are equivalent if they have the same class. The class of OK is clearly the unit in

ClK , and any ideal in the same class as OK is principal. In a way, ClK encompasses

how principal (or not) an ideal really is. The class group is finite, and its order

hK = #ClK is called the class number. In the cyclotomic case, bounds on the size of

hK are known.

Lemma 3.4.1. Let K be the n-th cyclotomic number field, then

log hK = Θ(n logφ(n)).

Proof. See [Was97], Theorem 4.20.

The maximal real subfield of K is denoted K+. The class number of ClK+ is

denoted h+, and will play an important role later. In fact, we have a canonical

surjective morphism from ClK into ClK+ obtained by multiplication of ideals by their

complex conjugate. The kernel of this morphism defines the minus part of the class

group, Cl−K . Its cardinality is h−, and clearly we have h = h+h−.

Recall from Proposition 3.1.1 that Gal(Q(ζn)/Q) ∼= (Z/nZ)×, where the isomor-

phism sends integers a coprime with n to morphisms σa that send ζn to ζan. Let

{x} = x− ⌊x⌋ denote the fractional part of the real number x.
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Definition 3.4.2 (Stickelberger Ideal). For an integer a ∈ Z, we define the Stickel-

berger elements in K to be

θ(a) =
∑

b∈(Z/nZ)×

{
ab

n

}
σ−1
b ∈ Q[G].

Define the Stickelberger ideal as S = Z[G] ∩ θZ[G], where θ := θ(1).

The Galois ring Z[G] acts on ideals of OK as follows: for a an ideal of OK , and

α =
∑

σ∈G aσσ ∈ Z[G], we write

aα =
∏
σ∈G

(aσ)aσ ,

and this induces a group action on ClK . The Stickelberger ideal can also be seen as a

sublattice of Zφ(n) as the latter is isomorphic to Z[G]. The following property will be

extremely useful for finding class relations. Its proof can be skipped on a first read,

but it is interesting to understand where the Stickelberger lattice comes from.

Theorem 3.4.3. Let a be a fractional ideal of OK, and let β ∈ S . Then the ideal aβ

is principal. In other words, the Stickelberger ideal annihilates the ideal class group

of K via the action of the Galois ring Z[G].

Proof. Even thought this theorem remains true for arbitrary number fields, we only

give a proof in the cyclotomic case for K = Q(ζn). This proof is the same as the

proof in [Was97], Chapter 15 (see Chapter 6 for the more general case).

Let β ∈ Z[G] such that βθ ∈ Z[G]. We must show that βθ annihilates any ideal class

C ∈ ClK . By Chebotarev’s density theorem, there exists infinitely many prime ideals

of degree 1 in C. Fix λ such a prime ideal, and let ℓ be the rational prime below λ.

Since ℓ splits completely in K, as λ is of degree 1, we must have ℓ ≡ 1 mod n (see

for example [Was97], Theorem 2.13). We let L = Q(ζℓ) and M = Q(ζn, ζℓ). From

Proposition 3.1.1 point (4) we get that ℓ divides the discriminant ∆L so is totally

ramified in L. Therefore because n and ℓ are coprime, λ is totally ramified in M , and

there exists an ideal L of M such that λ = Lℓ−1. We now take s a primitive root

modulo ℓ, the character χ : (Z/ℓZ)× → C× defined by χ(s) = ζn, and consider the

Gauss sum

g(χ) =
ℓ−1∑
b=1

χ(b)ζbℓ ∈M.
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We are interested in the factorisation of the ideal (g(χ)) in M . First see that

g(χ)g(χ) =
∑

a,b∈(Z/ℓZ)×
χ(a)ζaℓ χ(b

−1)ζ−b
ℓ

=
∑

a,b∈(Z/ℓZ)×
χ(ab−1)ζa−b

ℓ

=
∑

b,(ab−1 )̸=0

χ((ab−1))ζ
b(ab−1)−b
ℓ

=
∑
b̸=0

χ(1) +
∑

(ab−1 )̸=0,1

χ((ab−1))
∑
b ̸=0

ζ
b(ab−1−1)
ℓ

= (ℓ− 1) +
∑

(ab−1 )̸=0,1

χ((ab−1))(−1) = ℓ,

therefore only primes above ℓ in M can divide (g(χ)). Now from the definition of

ℓ, such primes have to of the form σ(L) for a σ ∈ Gal(M/Q), but since λ = Lℓ−1

these prime ideals only depend on the restriction of σ to the initial Galois group G.

Therefore there exists integers ra for a coprime to n such that

(g(χ)) =
∏

gcd(a,n)=1

(
σ−1
a L

)ra
,

where the σa span G. From (ℓ) =
∏

σ∈G(σL)ℓ−1 and g(χ)g(χ) = ℓ we must have

0 ≤ ra ≤ ℓ− 1. Elements of Gal(M/Q) act on g(χ) as multiplication by an n-th root

of unity. Therefore g(χ)n ∈ K, and since n divides ℓ− 1, g(χ)ℓ−1 ∈ K. But from the

equation above and λ = Lℓ−1, we deduce

(g(χ))ℓ−1 =
∏

gcd(a,n)=1

(
σ−1
a λ
)ra

; (3.1)

which is exactly showing that
∑

gcd(a,n)=1 raσ
−1
a ∈ Z[G] annihilates the class C of λ

in ClK . We are almost done, but we first need to investigate further the values of

the exponents ra, using some modular trickery. Fix a coprime with n and define

τ ∈ Gal(M/K) by τ : ζℓ → ζsℓ where s is the primitive root used for defining χ. Then

τ acts trivially mod σ−1
a L, and using the simple calculation

ζsℓ − 1

ζℓ − 1
= 1 + ζℓ + . . .+ ζs−1

ℓ ≡ s mod σ−1
a L;

we get

g(χ)

(ζℓ − 1)ra
≡
(

g(χ)

(ζℓ − 1)ra

)τ

mod σ−1
a L

≡ g(χ)

(ζℓ − 1)ra
· χ(s)

−1

sra
mod σ−1

a L,
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but σ−1
a L divides (ζℓ − 1) exactly once, so by definition of ra,

g(χ)
(ζℓ−1)ra

has no more

factors σ−1
a L, therefore we can cancel out and get

ζ−1
n = χ(s) ≡ s−ra mod σ−1

a L,

and

ζ−a
n = σa(ζn) ≡ σas

−ra mod L.

Both sides of the congruence are in K, so it also holds modulo λ. The order of ζm

modulo λ is m (as from the equation ℓ =
∏ℓ−1

j=1(1− ζ
j
ℓ ) all roots of unity are distinct

modulo λ), so if ζ−1
n ≡ sb mod λ, then we must have b = (ℓ−1)c

n
for some integer c

coprime to n. Then it also holds that

s
(ℓ−1)ac

n ≡ sra mod ℓ,

and so

ra ≡
(ℓ− 1)ac

n
mod (ℓ− 1),

but since 0 ≤ ra ≤ ℓ−1, we must have ra = (ℓ−1)
{

ac
n

}
. Therefore from Equation 3.1,

we now get that ∑
gcd(a,n)=1

raσ
−1
a =

∑
gcd(a,n)=1

(ℓ− 1)
{ac
n

}
σ−1
a = (ℓ− 1)σcθ

annihilates C, with (g(χ))ℓ−1 = λ(ℓ−1)σcθ.

We are now almost done, as we aim to prove λβθ = 1. Let γ = g(χ)σ
−1
c β, so

γℓ−1 ∈ K and with ideals

λβθ(ℓ−1) = (γℓ−1). (3.2)

Since we have taken βθ ∈ Z[G], (γℓ−1) is the (ℓ − 1)-th power of an ideal in Q(ζℓ),

so by [Was97], Exercise 9.1, the extension K(γ)/K can only be ramified at primes

dividing ℓ−1. However we already know that K(γ) ⊆M andM/K is totally ramified

at ℓ. Therefore the extension K(γ)/K is trivial and γ ∈ K. Taking the (ℓ − 1)-th

root of Equation 3.2 proves that λβγ is principal, and therefore we are done.

3.5 Quantum Algorithms for Class Group Compu-

tation

The class group ClK is a complicated object, and even though it has been studied

extensively throughout the past few centuries, computations in the class group are

still difficult. The best classical algorithms run in subexponential time (in log |∆K |),
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see [BF14], [BEF+17]. Instances of the hidden subgroup problem in quantum comput-

ing are often the key to unlocking quantum polynomial-time algorithms for tasks that

have no known classically polynomial algorithms, for instance that is the case with

integer factoring and Shor’s algorithm. In [EHKS14], Eisenträger, Hallgren, Kitaev

and Song generalise the hidden subgroup problem from discrete groups to Rn, en-

abling computation of unit groups in polynomial-time. Biasse and Song [BS16] build

upon [EHKS14] to come up with a polynomial-time quantum algorithm to compute

S-unit groups over arbitrary number fields, thus enabling fast quantum class group

computations and solving the principal ideal problem in quantum polynomial-time:

Theorem 3.5.1. There is a quantum algorithm for deciding if an ideal a ⊂ O of

an order O in a number field K is principal, and for computing α ∈ O such that

a = αO which runs in polynomial time in the parameters n = deg(K), log(N (a)) and

log(|∆|), where ∆ is the discriminant of O.

Proof. This is [BS16], Theorem 1.3.

From the algorithm to compute S-units in [BS16], it is not too difficult to derive

an algorithm for solving the class group discrete logarithm problem:

Theorem 3.5.2. Let B be a set of prime ideals generating ClK and B ∈ R such that

N (p) ≤ B for all p ∈ B. Then there is a quantum algorithm that given an ideal a in

OK outputs a vector e ∈ ZB such that
∏

p∈B pep ∼ a, which runs in polynomial time

in the parameters n = deg(K), log(N (a)), log(B) and #B.

Proof. See [CDW17], Appendix B.
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Chapter 4

Lattice-Based Cryptography and
Ideal-SVP

In Chapter 2, we saw examples of hard lattice problems such as svp, cvp, and

their approximation counterparts. In this chapter we explore how these problems

are used to build cryptographic protocols. Lattice-based protocols are convenient

because of their simplicity and efficiency, but more so because of the strong security

proofs that come with it. These security proofs come in the form of worst-case to

average-reductions, where an average-case problem is proven to be at least as hard

as any instance of another problem, which is assumed to be difficult. For example,

an attacker would typically be interested in an average-case problem, say a random

lattice used in an instantiation of the protocol, and this will be at least as hard as

solving any instance of the difficult problem in the security reduction, in particular the

worst-case or hardest instance of this problem. But why are lattice-based protocols

resistant to attacks by quantum computers? The answer is no one knows, but there

is hope as no dangerous attacks are known. Time will tell as more cryptanalysis

research is needed.

4.1 Lattice-Based Cryptosystems

The main problems that serve as a basis for lattice-based cryptosystems are the Short

Integer Solution problem introduced in [Ajt96] in 1996 and the Learning With Errors

problem introduced in [Reg05] in 2005.

Problem 4.1.1 (Short Integer Solution (sis)). Let n,m, q, B ∈ Z>0 with B ≪ q.

Zq denotes integers modulo q. Given A ∈ Zn×m
q a uniform random matrix, find a

non-zero integer vector z ∈ Zm of norm ∥z∥ ≤ B such that A z ≡ 0 mod q.
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Problem 4.1.2 (Learning With Errors (lwe)). Let n,m, q,∈ Z>0. Let A ∈ Zm×n
q

be a uniform random matrix, s ∈ Zn
q a random uniform secret vector, and e ∈ Zn a

random integer matrix sampled from a discrete Gaussian distribution. Given A and

b, where

b := A s + e mod q;

recover the secret vector s.

Sampling from a discrete Gaussian distribution can be done with different pa-

rameters αq for some α < 1, the error rate. Essentially, we want b to be short so

that decoding is possible. Problem 4.1.2 is called the Search variant of lwe. It can

be reformulated as a Decision variant, where given a pair (A, b) generated either as

in the Search variant for a uniform s, or directly from the uniform distribution, one

must decide which is the case with non-negligible advantage.

sis and lwe enjoy average-case to worst-case reductions to difficult problems (see

Section 4.3), however for cryptographic applications they require sharing A publicly

where A has quadratic size, and this makes them inherently inefficient. Drawing inspi-

ration from the NTRU cryptosystem [HPS98], new schemes were invented, involving

more structured matrices, enabling more compact keys and more efficient algorithms.

4.2 Cryptosystems Based on Structured Lattices

The first time structured lattices were explicitly studied in cryptography goes back

to 2002 and the Ring-sis problem, studied in [Mic07]. Similarly in 2009 and 2010,

[SSTX09] and [LPR10] introduce a similar adaptation for lwe, called Ring-lwe,

which we will describe in more detail.

Problem 4.2.1 (Ring Learning With Errors (Ring-lwe)). Let n,m, q ∈ Z>0. Let R

be a ring of degree n over Z, and Rq = R/qR. Let α < 1 be an error rate and χ be

the discrete Gaussian distribution over R with parameter αq. Let a ∈ Rm
q uniformly

at random, s ∈ Rq a random uniform secret, and let e ∈ Rm by a vector whose every

coordinates are sampled from χ. Given a and b, where

b := a s + e mod q;

recover the secret s.
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Typically, R is the ring of integers of a number field K = Q[X]/Φ(X), where

Φ(X) is a cyclotomic polynomial, for example X2k + 1. As in lwe, this is the search

version. Similarly, a decision version exists and [LPR10] proves that its security is

equivalent for cyclotomic rings.

In 2011, the paper [BGV11] introduces a variant of Ring-lwe called Module-lwe.

Its security is studied in [LS12]. Even though we will not study Module-lwe in this

dissertation, it is important to mention it as this is the difficult problem that the

newly standardised scheme crystals-Kyber relies on.

Definition 4.2.2 (Module). Let k ≥ 1, K a field and R a ring. A subset M ⊆ Kk

in an R-module if it is closed under addition and multiplication by elements of R.

If K is a number field and R = OK , a R-module M ⊆ Kk can be represented as

M =
∑

i=1k Ii · bi where the Ii are ideals of R and the bi are vectors of Kk. If the

Ii are non-zero and the bi linearly independent, M is said to be a module of rank k.

Modules can be seen as lattices via the embeddings σk and Σk as in section 3.3. Note

that rank 1 modules are in fact ideals.

Problem 4.2.3 (Module Learning With Errors (Module-lwe)). Let n,m, k, q ∈ Z>0.

Let R be an ring of degree n over Z. Let Rq = R/qR. Let α < 1 be an error rate

and χ be the discrete Gaussian distribution over R with parameter αq. Let A ∈ Rm×k
q

uniformly at random, s ∈ Rk
q a random uniform secret vector, and let e ∈ Rm by a

vector whose every coordinates are sampled from χ. Given A and b, where

b := A s + e mod q;

recover the secret vector s.

Module-lwe for k = 1 is exactly Ring-lwe. For k > 1, it is not immediate

to see why we use the word module to describe the problem: it is just a general

version of Ring-lwe. The module terminology becomes important when studying the

underlying lattice and proving security reductions. We will not discuss this further

in this work.

4.3 Security Reductions

In this section we give examples of average-case to worse-case reductions for the

lattice-based protocols presented earlier in this chapter. The chain of reductions to

remember is presented in Figure 4.1.

32



Ring-lwe(qk) ≥ Module-lwe(k, q) ≥ Ring-lwe(q) ≥ Ideal-svp

Figure 4.1: Chain of reductions presented in Chapter 4

Theorem 4.3.1. With the same notations as in Problem 4.1.1 and m ≥ n log q,

m = poly(n), solving sis is at least as hard as the worst-case of γ-svp with an

approximation factor γ = poly(n).

Proof. The idea behind this reduction is that L = {z ∈ Zm | Az ≡ 0 mod q} is

a lattice and sis consists in looking for a short vector in L. See [Ajt96] for full

details.

Theorem 4.3.2. Using the same notations as in Problem 4.1.2, for m = poly(n),

q ≤ 2poly(n) and an error rate α ≥ 2
√
n
q
, solving lwe is at least as hard as quantumly

solving the worst-case of γ-svp with an approximation factor γ = poly(n/α).

Proof. This reduction relies on classical and quantum computation, and uses the

lattice L = {z ∈ Zn | ∃s ∈ Zn, As ≡ x mod q}. For full details see [Reg05].

For structured lattices, we have similar reductions. In fact, we are interested in

reductions to the following problem: Ideal-γ-svp (or Ideal-svp) for short.

Problem 4.3.3 (Ideal Approximate Shortest Vector Problem (Ideal-γ-svp)). Given

an ideal a in the ring of integers OK of a number field K, and an approximation

factor γ ≥ 1, find a non-zero vector u ∈ σ(a) such that ∥u∥ ≤ γλ1(a).

Recall that σ is the Minkowski embedding defined in section 3.3, and that λ1(a)

denotes the length of the shortest non-zero vector in the lattice σ(a). Ideal-γ-svp is a

special case of γ-svp. It could also have been defined using the coefficient embedding

Σ, but this ultimately will not impact the magnitude of γ.

Theorem 4.3.4 ([LPR10]). Using notations of Problem 4.2.1, for any m = poly(n),

ring R of degree n over Z, solving Ring-lwe is at least as hard as quantumly solving

Ideal-γ-svp on worst-case ideal lattices in R, for some γ = poly(n)/α.

This result means that breaking Ring-lwe automatically solves Ideal-svp for

a polynomial approximation factor. However, this does not necessarily mean that

breaking Ideal-svp breaks Ring-lwe. Their security could be the same, or there could
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be a big gap in hardness. The scientific approach is to try and break the weakest link,

that is try to find an attack against Ideal-svp with a polynomial approximation fac-

tor. Even if this does not immediately break Ring-lwe, it may provide some insight

as to how to break it. The following chapters discuss state-of-the-art attacks against

Ideal-svp. For completeness, we give one last reduction, to put into perspective the

security of NIST-standardised scheme crystals-Kyber.

Theorem 4.3.5 ([AD17], informal). There is a classical reduction from Module-lwe

with rank k over a general ring R/qR to Ring-lwe in R/qkR.

crystals-Kyber relies on rank k = 2 Module-lwe. This last reduction is here to

justify that even though there probably is a hardness gap between Module-lwe and

Ring-lwe, this gap is still fathomable, as an extremely fast attack on Ring-lwe would

enable an attack on Module-lwe. For now though, we stay focused on Ideal-svp.
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Chapter 5

Attacks on Ideal-SVP: An
Overview

5.1 Additive Attacks

Until 2014 and [CGS14], most people believed that the best algorithms for solving

Ideal-svp were not better than those for solving svp on unstructured lattices. These

algorithms rely only on the additive structure of the lattice, i.e. they don’t use the

fact that the lattice was constructed from an ideal with lots of number theoretic

structure. Recall from Algorithm 1 that LLL can solve Ideal-svp with exponential

approximation factor in polynomial time. In fact it is also possible to get a polynomial

approximation factor in exponential time. The best known trade-offs are listed as

Schnorr’s hierarchy in [Sch87]. The best variant is the Blockwise Korkine-Zolotarev

(BKZ) algorithm [CN11]. It can be adjusted in a way that on lattices of dimension n,

it obtain an approximation factor exp(Õ(nα)) in time exp(Õ(n1−α)) for any α ∈ [0, 1].

The notation Õ ignores any log(n) factors, such that Õ(nα) = O(nα(log(n))β) for any

α > 0, β ∈ R. Since then, faster algorithms have been discovered that use the

multiplicative structure of the ideal, proving that the gap between the hardness of

svp and Ideal-svp exists.

5.2 Multiplicative Attacks

S-unit attacks, also referred to as unit attacks if S is empty exploit not only the

additive structure of algebraic lattices, but also their multiplicative structure. Recall

that we are interested in solving Ideal-svp with approximation factor γ: we are given

an ideal a ⊂ OK and are asked to output an element v ∈ a of length at most γλ1(a).

In Figure 5.1, we give the general outline of unit attacks.
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Unit attack:

1. Start with an ideal a;

2. Find an ideal b of small norm such that c = ab is principal;

3. Find a generator g of c;

4. In the log-unit lattice, find a vector Log(u) such that
Log(g)− Log(u) is short;

5. Output v = g/u.

Figure 5.1: High-level description of a unit attack

Phase 3 of the unit attack is solved quantumly by using the algorithm from Theo-

rem 3.5.1. The idea behind Phase 2 is that if we find a short element in c, the because

b is small and integral, we get a short element in a, and we go through the trouble

of doing so because Ideal-svp seems to be easier with principal ideals. Phase 2 is

discussed in detail in Section 6.2.

Lemma 5.2.1. Let g and g′ be two generators of a non-zero principal ideal, then

g = g′u for a certain u ∈ O×
K.

Proof. If gOK = g′OK then there exists a, b ∈ OK such that g = g′a and g′ = gb. We

deduce g = gba and g′ = g′ab, hence because g, g′ ̸= 0, ab = ba = 1 so a ∈ O×
K .

Suppose that from Phase 3 we know a generator g of a, and suppose we know that

there exists a short generator g′ of a. This is not always the case, but in some early

schemes like soliloquy, this is true. Therefore by Lemma 5.2.1, there exists a unit

u ∈ O×
K such that g = g′u. By taking the Log, we get Log(g′) = Log(g) − Log(u),

where ∥Log(g′)∥ is small and Log(u) ∈ Λ, the log-unit lattice. Therefore Phase 4

can be seen as an instance of cvp in Λ, with target Log(g). This step can be done

efficiently (see Section 6.1) and therefore breaks soliloquy.

In general principal ideals do not have very short generators, this is why it can be

useful to use S-unit attacks. S-unit attacks follow the same general pattern, but allow

for more choice in c, leading to maybe better results in the last step of the attack. In

Figure 5.2, we give the blueprint for S-unit attacks.

The coefficients αi are positive, therefore c ⊆ a as in the unit attack. The hope

of such an attack is the the close principal multiple c admits an unusually short
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S-Unit attack:

1. Start with an ideal a, and S = {p1, . . . , pk} a finite set of
prime ideals;

2. Find positive integer coefficients αi such that the ideal

c = a

k∏
i=1

pαi
i is principal;

3. Find a generator g of c;

4. In the log-S-unit lattice, find a vector Log(s) such that
Log(g)− Log(s) is short;

5. Output v = g/s.

Figure 5.2: High-level description of an S-unit attack

generator. Adding more primes in S means that there are more candidate c, so we

can hope to find such a good c. Phase 2 and Phase 3 have polynomial time quantum

algorithms from Theorem 3.5.2 and Theorem 3.5.1 respectively. So far there is no

guarantee that the αi are small, or that the ideal c has a short generator. This is where

the log-S-unit lattice ΛS comes into play. Recall that the LogS-embedding sends g to

the concatenation of Log(g) with (αiN (pi))i∈{1,...,k}. If simultaneously we had Log(g)

short and (αiN (pi))i∈{1,...,k} short, this would mean that the ideal (g) would have a

short generator, and that
∏k

i=1 p
αi
i would also be of small norm, meaning the short

generator for (g) would end up being a good candidate solution for γ-svp in a. Now

note that adding a vector from ΛS to LogS(g) has the effect of multiplying (g) with

a principal ideal, meaning the resulting ideal is still principal. Therefore Phase 4 as

a cvp instance in ΛS is justified. In Section 6.3 we review how this has been done

in the literature. Finally in Phase 5 we must make sure that our output v is still

in a. This is not a real problem and can be made sure of by carefully executing the

algorithm for cvp in Phase 4.

5.3 Summary

In Figure 5.3 α ∈ [0, 1] and β ∈ [0, 1
2
]. All runtime complexities of unit and S-unit

attacks are quantum, as they all rely on the algorithms from [BS16] presented in

Section 3.5. Using results from [BF14] and [BEF+17], it is possible to do the class
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Paper Type Number fields Ideals γ Runtime Pre-p

[Sch87] Additive Any Any 2Õ(nα) 2Õ(n1−α) No

[CDPR16] Unit pk-Cyclotomics Principal 2Õ(
√
n) poly(n) No

[CDW17] Unit pk-Cyclotomics Any 2Õ(
√
n) poly(n) No

[PMHS19] S-Unit Any Any 2Õ(nβ) 2Õ(n1−2β) 2Õ(n)

[CDW21] Unit Cyclotomics Any 2Õ(
√
n) poly(n) No

Conjecture S-Unit 2k-Cyclotomics Any poly(n) 2Õ(
√
n) 2Õ(

√
n)

Figure 5.3: A summary of recent algorithms for Ideal-γ-svp

group computations classically, and this would add a term 2Õ(n2/3) (or 2Õ(
√
n) if K is

prime-power cyclotomic) to all runtimes.

In 2019, Ducas Plançon and Wesolowski in [DPW19] study runtimes behind the

unit attack from [CDPR16] and [CDW17] with more precision and run experiments

assuming state-of-the-art cvp solvers, and they predict that this multiplicative attack

only beats BKZ for cyclotomics of order at least 20000. Of course some improvements

are possible, but they give a lower bound on the speed of the attack, arguing with the

Gaussian heuristic that the attacks will never be better than BKZ for cyclotomics of

order less than 4000. NIST schemes all use fields of order 1024 or less.

The last row of the table refers to conjectured subexponential scalability, an-

nounced by Bernstein in a talk at the SIAM conference in 2021 [Ber21], and again by

Lange in a talk at the ANTS-XV conference in 2022 [Lan22]. We will take a deeper

look at this conjecture in Section 7.3.
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Chapter 6

Digging Deeper into Multiplicative
Attacks

6.1 Finding Close Vectors in Auxiliary Lattices

In this section, we explore Phase 4 of the unit attack, solving cvp in the auxiliary

lattice.

Theorem 6.1.1 ([CDPR16], Theorem 6.5). Let K be a prime-power cyclotomic num-

ber field of conductor n. Then there exists a quantum polynomial-time algorithm that

solves Ideal-γ-svp for any principal ideal a of OK, where γ is an approximation factor

of size exp(Õ(
√
n)).

The first step of this algorithm is Phase 2 of the unit attack, for which the algo-

rithm from Theorem 3.5.1 outputs a generator g of the principal ideal a in quantum

polynomial time. In this section we will provide a rough sketch of the proof of

Theorem 6.1.1 in the case where g follows a natural distribution, for example as in

soliloquy.

As seen in the overview of unit attacks in Section 5.2, Phase 3 requires that we

solve an instance of cvp in the log-unit lattice. Luckily, using cyclotomic units we

know an explicit (almost) basis of the log-unit lattice.

Theorem 6.1.2. Let p be a prime number and m ∈ Z>0, then group of cyclotomic

units Cpm of Q(ζpm) has finite index in the group of units O×
K, and more precisely we

have

[O×
K : Cpm ] = h+pm ,

where h+pm is the class number of the maximal real subfield of K.
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Proof. The proof follows from combining [Was97], Theorem 8.2 with the result of

Exercise 8.5 in the same book.

From the above theorem, we get that Log(Cpm) is a sublattice of Λ of index h+pm .

Recall Lemma 3.1.4: if n = pm, the group Cpm is generated by (−1), ζn, and bj = 1−ζjn
1−ζn

for 1 < j < n
2
and gcd(j, p) = 1. Let G be the set of such j.

Lemma 6.1.3. The family of vectors Log(bj) for j ∈ G is a family of linearly inde-

pendent vectors in H
φ(n)
2

0 .

Proof. By Lemma 3.1.4, the bj for j ∈ G with (−1) and ζn generate Cpm the group of

cyclotomic units, but by Theorem 6.1.2, Log(Cpm) has the same rank as Λ so φ(n)
2
−1,

therefore as Log((−1)ZζZn ) = 0, we must have that the Log(bj) for j ∈ G} are a basis

of Log(Cpm), in particular they are linearly independent.

In order to solve cvp in Log(Cpm) we use Babai’s round-off algorithm with the

basis given by the Log(bj). Note that in the general case h+pm is not always 1, so

we should rather solve cvp in Λ. This is not a big problem and will be discussed

in Section 6.4. For now assume all units are cyclotomic units. For the round-off

algorithm to work, using Proposition 2.2.12 we would need 1
2
≤ ⟨Log(bj)∨,Log(g)⟩ < 1

2

for all j ∈ G.
The following theorem is again from [CDPR16]. It is quite technical and uses

the theory of Dirichlet L-functions to study the geometry of our basis of the log-unit

lattice.

Theorem 6.1.4 ([CDPR16], Theorem 3.1). Vectors of the basis dual to (Log(bj))j∈G

in Log(Cpm) all have the same norm and satisfy

∥Log(bj)∨∥2 = O(n−1 log3 n)

for all j ∈ G.

Theorem 6.1.5 ([CDPR16], Theorem 4.1). Assume c is an absolute constant and

g follows a distribution D such that for any orthonormal vectors v1, . . . , vφ(n)/2−1 ∈
H

φ(n)/2
0 , with probability at least α > 0 |⟨vi,Log(g)⟩| < c

√
n log−3/2 n holds for all i.

Then the unit attack succeeds with probability at least α.

Proof. We use the round-off algorithm on Log(g′) = Log(g) + Log(u), with vectors

(Log(bj))j∈G as basis. By Theorem 6.1.4 combined with Proposition 2.2.12, the output

is Log(u). Now writing Log(u) =
∑

j∈G aj Log(bj) and outputting g∏
j∈G b

aj
j

gives a

shorter vector in the ideal.
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Section 5 of [CDPR16] proves that discrete Gaussian and Gaussian distributions

give the assumption in Theorem 6.1.5. But this assumption is in fact not needed if

we are ready to accept a larger approximation factor. Section 6 of [CDPR16] proves

that a process very similar to this one yields a solution to principal Ideal-svp with ap-

proximation factor exp(Õ(
√
n)). It also proves that generators in principal ideals are

with high probability of size exp(Õ(
√
n)) times that of their shortest vector meaning

that algorithms that output a generator can never do better than exp(Õ(
√
n)).

6.2 Reducing to Principal Ideals

This section is almost entirely based on the 2017 paper by Cramer, Ducas and

Wesolowski [CDW17]. It tackles Phase 2 of the description of unit attacks for prime-

power cyclotomics. Theorem 6.1.1 only solves γ-Ideal-svp in the case of principal

ideal. However from Lemma 3.4.1, we expect the class number hK to be much

larger than 1, meaning that Theorem 6.1.1 is not expected to work for general ideals.

[CDW17] proposes the following extension:

Theorem 6.2.1 ([CDW17], Main result). Let K be a prime-power cyclotomic number

field of conductor n. Then there exists a quantum polynomial-time algorithm that

solves Ideal-γ-svp for any ideal a of OK, where γ is an approximation factor of size

exp(Õ(
√
n)).

This theorem acts as an extension of Theorem 6.1.1, and its proof relies on the

following problem (Phase 2 of the unit attack):

Problem 6.2.2 (Close principal multiple problem (cpm)). Given a an ideal of OK,

find an ideal b of norm less than exp(Õ(n3/2)) such that c = ab is principal.

Proposition 6.2.3. Solving Problem 6.2.2 in quantum polynomial time is enough to

prove Theorem 6.2.1.

Proof. Suppose we have a c = ab principal with N (b) = exp(Õ(n3/2)), then we can

use algorithm 6.1.1 on c to get a generator g ∈ c such that

∥g∥ ≤ λ1(c) exp(Õ(n
1/2))

≤ N (c)
1
n poly(n) exp(Õ(n1/2))

≤ N (a)
1
nN (b)

1
n poly(n) exp(Õ(n1/2))

≤ N (a)
1
n exp(Õ(n3/2))

≤ λ1(a) poly(n) exp(Õ(n
3/2))

≤ λ1(a) exp(Õ(n
3/2)),
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where we used Proposition 3.3.2. b is integral, therefore g ∈ c ⊂ a which concludes.

How hard is it to find a solution to cpm? If the class group is trivial, then so is

cpm. If hK = poly(n) then we could pick random small norm ideals b until a ∼ b−1.

But hK is larger, so this won’t be enough.

As a first step towards cpm, suppose we have a finite set B of polynomially

bounded prime ideals that generate ClK . We can use Theorem 3.5.2 on the ideal a

to find in quantum polynomial time a vector e ∈ ZB such that the relation

a ∼
∏
p∈B

pep

holds in ClK . If b =
∏

p∈B p−ep , then ab is principal. Our objective would be to have

∥e∥1 = Õ(n3/2) so that N (b) ≤ poly(n)Õ(n3/2) = exp(Õ(n3/2)), using the polynomial

bound on the prime ideals of B. We will also need to make sure that b is integral.

Assume that our factor basis for B is of the form

B = {pσ | σ ∈ G},

where G = Gal(K/Q) is the Galois group of K. Then by writing α =
∑

σ∈G σeσ ∈
Z[G], we get that [a] = [p]α, where [·] ∈ ClK denotes the class of · in ClK . Recall

from Theorem 3.4.3 that the Stickelberger lattice S of Z[G] is such that any s ∈ S
satisfies ps is principal. Therefore, finding if we somehow knew a decent basis for S ,

we would be able to solve a cvp instance in the lattice of class relations and find a

β ∈ S such that ∥α − β∥1 is small. The explanation is getting a bit dense so we

make a few remarks for clarity.

• ClK is supposed to be generated by the finite set B, so the set{
e ∈ ZB |

∏
p∈B

pep is principal

}

is indeed a lattice.

• We reduced cpm to an instance of cvp in the above lattice, but for a different

norm ∥ · ∥1 instead of the usual Euclidean norm. This won’t be a problem as

we will see later.

• The Stickelberger lattice is not full-rank, so even with a short basis of S we

cannot immediately reduce. This technicality can be solved by working in Cl−K .
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Lemma 6.2.4. Assuming the Generalised Riemann Hypothesis (GRH) and h+K =

Õ(poly(n)), there is a polynomial algorithm in n and log(N (a)) that send a principal

ideal a in OK to a principal ideal a′ = ab in Cl−K such that N (b) ≤ exp(Õ(n)).

Proof. This will not be discussed here, see [CDW17], Section 4.1.

The rank of the Stickelberger lattice S is not enough (φ(n)/2 + 1 and it should

be φ(n)), so we augment so that it has full rank in Z[G], and still annihilates Cl−K .

Definition 6.2.5. The augmented Stickelberger ideal (or lattice) is defined as

S ′ = S + (1 + τ)Z[G],

where τ acts on ClK as complex conjugation.

The enables us to derive the following useful proposition.

Proposition 6.2.6. The following points concerning the augmented Stickelberger lat-

tice S ′ are true:

1. S ′ annihilates Cl−K;

2. S ′ is full-rank in Z[G];

3. If φ(n) ≥ 3 there exists a set W such that ∀w ∈ W, ∥w∥ ≤ 2
√
n, and W that

generates S ′.

Proof. First we prove point (1). Clearly S annihilates Cl−K by Theorem 3.4.3, as Cl−K
is a subgroup of ClK . Also, we know that Cl−K is the kernel of the map that sends a

to aa = a(1+τ), meaning (1 + τ)Z[G] also annihilates Cl−K .

For point (2) we need to use Theorem 6.19 from [Was97] that states that the

lattice S − = S ∩ (1− τ)Z[G] has full-rank in (1− τ)Z[G], therefore we deduce that
the lattice S − +(1− τ)Z[G] has full-rank in 2Z[G] ⊂ (1+ τ)Z[G] + (1− τ)Z[G], and
then so does S ′.

For proof of point (3) we refer to [CDW17], Lemma 4, for which the set W can

be written down explicitly.

Now we can use W to reduce α ∈ Z[G], by using Babai’s Nearest plane algorithm

(recall Algorithm 2).

Lemma 6.2.7. Suppose φ(n) ≥ 3, let α ∈ Z[G], then there exists an algorithm that

finds an element β ∈ Z[G] such that ∥β∥1 ≤ n3/2, and α − β annihilates Cl−K, which

runs in classical polynomial time in n and log ∥α∥.
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Proof. From Proposition 6.2.6, W provides a basis B for S ′ and S ′ is full-rank in

Z[G]. If B⋆ denotes the Gram-Schmidt orthogonalisation of B then by Lemma 2.2.13

Babai’s nearest plane algorithm applied to α leads to a vector β such that

∥α− β∥2 ≤ 1

4

φ(n)∑
i=1

∥b⋆i ∥2,

and in particular, ∥α− β∥ ≤ 1
2

√
nmax(∥b⋆i ∥), but max(∥b⋆i ∥) ≤ max(∥w∥) ≤ 2

√
n by

property of the orthogonalisation and by point (3) of Proposition 6.2.6. Therefore by

Cauchy-Schwarz and combining the previous inequalities,

∥α− β∥1 ≤ n3/2.

The second condition falls from point (2) of the same proposition.

Now we can give an algorithm that proves Theorem 6.2.1. Start with an ideal a

of OK . Suppose Cl−K is generated by B = {pσ | σ ∈ G}, where N (p) = Õ(poly(n)).

Assume GRH and use Lemma 6.2.4 so that we get a principal a′ in Cl−K , with norm

close to the norm of a. Then use the quantum algorithm from Theorem 3.5.2 to get

a vector e ∈ ZB that is a solution of the class group discrete logarithm problem for

a′. Define α =
∑

σ∈G σeσ ∈ Z[G], and use the algorithm from Lemma 6.2.7 to get a

β ∈ Z[G] such that ∥β∥1 = Õ(n3/2) and acting as α on Cl−K . If β = β+ − β− where

β+ and β− have positive coefficients in Z[G], then taking b = pβ
−+τβ+

ensures that b

is integral, ab is principal, and that N (b) = exp(Õ(n3/2)). All steps are polynomial

or quantum polynomial, so we are done.

Remark 6.2.8. We have assumed GRH, h+K = poly(n), and that there exists a factor

basis B of Cl−K that looked like the Galois orbit of a single small prime. For a

discussion of these assumptions see Section 6.4.

6.3 Ideal-svp with Pre-processing

The previous two sections explain unit attacks. This section is inspired by the paper

[PMHS19] by Pellet–Mary, Hanrot and Stehlé in 2019. [PMHS19] marks the first time

S-units are used for an attack on Ideal-svp in the literature. Further improvements

include [BRL20], and more recently [BLNRL21], enabling experiments on general

cyclotomic fields of degree up to 210.

The attack of [PMHS19] relies on the following algorithm of Laarhoven in [Laa17]

for cvp with pre-processing.
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Theorem 6.3.1 ([Laa17], Corollaries 2 and 3). Let α ∈ [0, 1
2
]. Assuming the Gaussian

heuristic for a full-rank lattice L ⊂ Rn, there exists an algorithm that takes as pre-

processing input L and a target vector v ∈ Rn and as query input a vector u ∈ L
such that ∥u − v∥ ≤ O(nα) dist(v,L), with pre-processing time 2Õ(n) and query time

2(Õ(n1−2α)).

The heuristic assumption will be discussed further in Section 6.4. This algorithm

enables the following result, true for general number fields, but presented here for

cyclotomic number fields for simplicity of exposition.

Theorem 6.3.2 ([PMHS19], Theorem 5.1). Let K be the n-th cyclotomic number

field, and α ∈ [0, 1
2
]. Under GRH and the Gaussian heuristic, there exists an algorithm

that takes K as pre-processing input, and an ideal a of OK as query input that solves

Ideal-γ-svp where γ is an approximation factor of size exp(Õ(n1−2α)), and that runs

in time exp(Õ(nα)) with pre-processing in time exp(Õ(n)).

The key take from Theorem 6.3.2 is that there exists a non-uniform algorithm

that outperforms all known additive attacks. This is not the case for unstructured

lattices and shows a potential gap between Ideal-γ-svp and γ-svp for γ = poly(n)

(α = 0 in Theorem 6.3.2). We give a short explanation of the proof of Theorem 6.3.2,

and refer to [PMHS19] and [BRL20] for the full technical details, especially relatively

to parameter choices and twisting the log-S-unit lattice.

The algorithm is inspired by the unit attack of [CDPR16] and [CDW17]. It

acknowledges that an algorithm that outputs a generator of an arbitrary principal

ideal will have no chance of breaking exp(Õ(
√
n)) approximation factors. For this

reasons we fix a finite set of prime ideals S = {p1, . . . , pk} that generate ClK , and as in

Section 6.2, we want to use S to obtain a principal ideal close to a, effectively solving

a cvp instance in the lattice of class relations over S. We then use the quantum

algorithm to get a generator of the obtained principal ideal, and then need to solve

another cvp instance in the log-unit lattice as in Section 6.1. The idea is to fuse both

cvp instances into one, inside a concatenated lattice, the log-S-unit lattice. In the

Unit-attack, we knew an almost basis of the log-unit lattice with cyclotomic units,

and could use it to solve cvp in the log-unit lattice. However in this case we do not

have a satisfying basis1. The key here is that we do not need to choose S depending on

a, but only on the number field K. Therefore we can entirely precompute the lattice

ΛS as soon as we know K. This justifies why we can use Theorem 6.3.1 (But this

1see [BLNRL21] for more work in this direction in the cyclotomic case, where Stickelberger
generators obtained with Jacobi sums are used to derive an explicit basis of the log-S-unit
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does not justify that ΛS behaves according to the Gaussian heuristic, this discussion

is left for Chapter 7). Concretely the algorithm goes as follows:

Pre-processing phase: For a given K, we first compute an adequate factor base

of prime ideals S. It must contain ideals of bounded norm, generate the class group,

and have adequate size. The fact that this is always possible relies on a generalised

prime number theorem and a theorem of Bach ([Bac90]). Once S is set, we compute

a generating set of S-units, along with their LogS-embeddings. This generates our

lattice ΛS, which we can pre-process using Theorem 6.3.1’s pre-processing algorithm.

This takes exponential time, even though the S-unit computation part can be sped

up quantumly using [BS16].

Query phase: Suppose that δ > 0 is such that the γ-cvp oracle from Theorem 6.3.1

used on any target v outputs s ∈ ΛS such that ∥s − v∥∞ ≤ δ. We first use Theo-

rems 3.5.2 and 3.5.1 to quantumly solve the class group discrete log problem for a

with factor base S. This gives a g ∈ K and integers αi ∈ Z such that

(g) =
∏
pi∈S

pαi
i .

Define the target

v = (Log(g), {αi + δ}1≤i≤k) ∈ ΛS.

We then use the cvp solver to get a LogS(s) ∈ ΛS such that ∥LogS(s)− v∥∞ ≤ δ. In

particular if for i ∈ {1, . . . , k}, βi = ordpi(s) we get |βi−αi+δ| ≤ δ, so 0 ≤ αi−βi ≤ 2δ.

But (g
s

)
= a

k∏
i=1

pαi−βi

i ;

which means that g/s is an element of a because αi − βi ≥ 0 and the pi are integral,

but also that g/s has small norm:

|N (g/s)|
1
n ≤ N (a)

1
nB

1
n

∑k
i=1(αi−βi) ≤ N (a)

1
n exp

(
O

(
δk logB

n

))
,

where B is a bound on the norm of the elements of S. By [Bac90] we can assume

B = O(log2 |∆K |). Comparing with Lemma 3.3.1, we can see that careful tweaking

of k and managing δ allows for a satisfying approximation. Some shortcuts have

been made regarding parameter choice, again see [PMHS19] and [BRL20] for the full

picture.
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6.4 A Comment on Assumptions

Along the way we have seen that the unit and S-unit attacks rely on assumptions and

heuristics. Some have extensive evidence that go their way, and do not have a big

impact on neither runtime nor correctness. However some would benefit from further

study. In this section we present a list of the heuristics that have been used, where

they are needed and if there is sufficient evidence to support them.

Generalised Riemann Hypothesis: GRH is a number-theoretical conjecture on

the zeros of Dirichlet L-functions, with many consequences in analytic number theory

and beyond. It is very widely considered to be true and enjoys very strong compu-

tational evidence. For our purposes, GRH implies the result of Bach [Bac90] that

says that ClK can be generated by a factor basis of prime ideals of norm less than

O(log2 |∆K |). This and more recent results is used in both [CDW17] (Lemma 6.2.4)

and [PMHS19] (Theorem 6.3.2).

Size of h+K: In the proof of Theorem 6.1.1 we use a basis of the cyclotomic units CK

instead of one of the full unit group to decode the log-unit lattice. From Theorem 6.1.2

we know their index in the unit group is equal to h+K , the class number of the maximal

real subfield of K. To tackle the general case, we can use the polynomial quantum

algorithm from [EHKS14] to compute the h+K coset representatives of CK in O×
K ,

meaning we would only multiply the runtime by a factor h+K . In Lemma 6.2.4, we

use the assumption that h+K = Õ(poly(n)) to make sure that we can reduce the cpm

problem from an principal ideal in ClK to a principal ideal in Cl−K in polynomial time.

This assumption seems very reasonable for prime-power cyclotomic fields and enjoys

very strong theoretical and computational evidence. In fact [BPR] conjecture that

for all but finitely many pairs (p, k) where p is a prime and m an integer, we have

h+Q(ζpm+1 )
= h+Q(ζpm ). A specialisation of this conjecture is the Weber class number

problem, conjecturing that h+K = 1 for power-of-two cyclotomics. These are more

often than not used in cryptography, so the assumption that h+K = Õ(poly(n)) seems

very reasonable.

Small Galois factor basis of Cl−K: In our discussion of Theorem 6.2.1, we suppose

that Cl−K can be generated by a factor basis of the form B = {pσ|σ ∈ G} where p is a

prime ideal of polynomially bounded norm. This can be relaxed to d different Galois

orbits of polynomially bounded prime ideals. If d = Õ(1), this does not impact the

resulting Ideal-svp approximation factor. In fact, randomly choosing primes in Cl−K
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of norm less than a certain bound B = poly(n) suffices most of the time. This is

made formal in [CDW17], Proposition 1. Testing membership of a prime ideal in Cl−K
can be done quantumly using Theorem 3.5.1.

Gaussian heuristic: The Gaussian heuristic is used for the Laarhoven cvp with

pre-processing algorithm in the 6.3.2 attack. Theorem 6.3.1 on a lattice L of dimen-

sion d requires that there exists a constant c > 0 such that the ball cλ1(L)Bd contains

at least 2n points of L, and these points behave as uniformly and independently on

the unit sphere. This assumption is a bit much to ask from the log-S-unit lattice.

See Chapter 7 and [BL21] for reasons why the log-S-unit lattice does not behave

according to the Gaussian heuristic. The Gaussian heuristic is used by [Laa17] to

predict reduction of the lattice. It is also used by [DPW19] to give heuristic lower

bounds on the speed of the attacks [CDPR16],[CDW17]. The risk here is that the

attacks work better than expected by the Gaussian heuristic, because of the apparent

non-randomness of the log-unit and log-S-unit lattices.

Other heuristics: A couple other heuristics are used in [BF14] for the classical

alternatives to the quantum algorithms of [BS16] and [EHKS14], but we won’t discuss

them here. [PMHS19] also uses more Gaussian heuristic-like assumptions regarding

the distribution of the input and output vectors of the Laarhoven cvp algorithm. See

Heuristics 5 and 6 in [PMHS19] for additional details.
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Chapter 7

Does the log-S-unit Lattice Behave
Like a Random Lattice?

7.1 A Simplified log-S-unit Lattice

How does the log-S-unit lattice behave compared to predictions from the Gaussian

Heuristic? In this section we go through the reasoning from [BL21] to demonstrate

that spherical models give inaccurate predictions for λ1 by considering the S-unit

lattice ΛS in the extreme case of rationals. This corresponds to the cyclotomic case

of degree 1, where K = Q and OK = Z. Let y ≥ 2 be our smoothness bound. We

look at sets of S-units with S of the form S = {pZ | prime p ≤ y}. In this setting,

S-units are rationals of the form a
b
where a, b are y-smooth rational integers.

A basis for ΛS is given by d = π(y) rows of the form (log p, 0, . . . , 0,− log p, 0, . . .)

for p ≤ y prime, where π(y) counts the number of primes less than or equal to y. If

pd is the largest such prime, L has basis:

L =



log 2 − log 2 0 0 . . . 0

log 3 0 − log 3 0 . . . 0

log 5 0 0 − log 5 . . . 0
...

...
...

...
. . . 0

log pd 0 0 0 . . . − log pd


To compute the volume of ΛS, we factor out

∏
p≤y log p, and multiply the remaining
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d× (d+ 1) matrix by its transpose to get the following d× d matrix:



1 −1 0 0 . . . 0

1 0 −1 0 . . . 0

1 0 0 −1 . . . 0
...

...
...

...
. . . 0

1 0 0 0 . . . −1





1 1 1 . . . 1

−1 0 0 . . . 0

0 −1 0 . . . 0

0 0 −1 . . . 0
...

...
...

. . . 0

0 0 0 . . . −1


=



2 1 1 . . . 1

1 2 1 . . . 1

1 1 2 . . . 1
...

...
...

. . . 1

1 1 1 . . . 2


This matrix has eigenvalue 1 with multiplicity d − 1, and therefore also d + 1 with

multiplicity 1 by looking at the trace. therefore its determinant is the product of the

eigenvalues: d+ 1. We deduce that

vol(ΛS) = detL = (1 + #S)1/2
∏
p≤y

log p.

We now prove that (vol ΛS)
1/d = (1 + o(1)) log y as y → ∞. For this we define

f the characteristic function of prime numbers, note that π(x) =
∑

n≤x f(n) and

compute using Abel’s transformation:

log

(∏
p≤y

log p

)
=
∑
n≤y

f(n) log log n

= log log 2 +
∑

3≤n≤y

f(n) log log n

= log log 2 + π(y) log log y − log log 2−
∫ y

2

π(t)

t log t
dt

= π(y) log log y +O

(
y

log y

)
.

Now log
(∏

p≤y log p
)
∼ π(y) log log y and both terms go to ∞ as y → ∞ therefore

we have
∏

p≤y log p ∼ exp(π(y) log log y) = (log y)d so

(vol ΛS)
1/d ∼ (1 + #S)1/2d log y ∼ log y,

as #S = d+ 1. The lattice has rank d as this is the rank of the matrix L. Therefore

by Lemma 2.4.6, we expect the length λS of the shortest non-zero vector in ΛS to

satisfy as d→∞

λS ∼
√

d

2πe
(vol ΛS)

1/d ∼
√

y

2πe log y
log y =

√
y log y

2πe
,
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where we used the prime number theorem on d. However all vectors LogS(p) for p ≤ y

are in ΛS and have length much smaller. In particular ∥LogS(2)∥ =
√
2 log 2, which

is constant and far from the order of magnitude of λS. This proof is not for general

cyclotomics, but it gives an idea as to why the log-S-unit lattice cannot be treated

like a random lattice. It contains many short vectors and therefore should enable

much faster reductions than in the case of random lattices.

7.2 Non-Randomness of the log-unit Lattice

In the last subsection, we saw that spherical models of S-unit lattices in the ratio-

nal case were getting worse at predicting short vectors as the smoothness bound y

increased. Following the reasoning from [BL21], we study the opposite case where

S = ∅ is empty, so that the S-unit lattice is in fact the unit lattice. [BL21] treats

the case of power-of-two cyclotomics. We generalise this approach to all prime-power

cyclotomics, i.e. fields K = Q(ζn), where n = pk with p a prime number and k ≥ 1

an integer.

Our objective is to compare the actual size of short vectors in Λ = Log(O×
K) with

the size predicted by the Gaussian heuristic, as in Lemma 2.4.6. In order to use

the formula in Lemma 2.4.6, we need to compute the volume of the log-unit lattice.

A proof of a precise asymptotic in the prime-cyclotomic case is given in [DPW19],

Appendix B.

Theorem 7.2.1. Let K = Q(ζn) be a cyclotomic field with n = pk a prime power.

Then the volume of the log-unit lattice Λ satisfies(
vol(Λ)

h+K

) 1
φ(n)/2−1

∼
√
n

as n→∞.

Proof. Details can be found in Appendix B of [DPW19]. They involve a result

from [Was97] on an expression of the product Rh+K , where R is the regulator of

the number field K.

Remark 7.2.2. This is not exactly the formula from [DPW19], as we had to account

for a slight difference in the definition of Λ.

We can assume that h+n
1

φ(n)/2−1 ∼ 1 (this has been extensively discussed in Sec-

tion 6.4). Along with Lemma 2.4.6, we get that the predicted length λ of the shortest
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non-zero vector in Λ, assuming the Gaussian heuristic, satisfies for prime-powers

n→∞

λ ∼
√
φ(n)/2− 1

2πe
vol(Λ)

1
φ(n)/2−1 ∼

√
nφ(n)

4πe
. (7.1)

For prime-power cyclotomics we have n
2
≤ φ(n) ≤ n, therefore we expect λ = Θ(n).

We are interested in comparing the shortest vector prediction λ from the Gaussian

heuristic with the length of an actual small vector in Λ. For this we consider a

particular unit and estimate its length.

Lemma 7.2.3. Let p ̸= 3 be a prime number, k ∈ Z>0 and K = Q(ζpk) the associated

prime-power cyclotomic number field, then if n = pk,

u = 1 + ζn + ζ−1
n

is a unit in OK.

Proof. We have

u = ζ−1
n

1− ζ3n
1− ζn

= 1 + ζn + ζp
k−1

n ∈ Z[ζn],

and for a certain integer m such that 3m ≡ 1 mod pk, that exists because gcd(3, p) =

1:

u′ = ζn
1− ζn
1− ζ3n

= ζn
1− ζ3mn
1− ζ3n

= ζn

m−1∑
j=0

ζ3jn ∈ Z[ζn].

Both are elements of OK = Z[ζn] and uu′ = 1, so we have proved that u ∈ Z[ζn]×.

We claim that the vector Log(u) is a non-zero vector shorter than λ, the prediction

from the Gaussian heuristic.

Lemma 7.2.4. Let n = pk with p ̸= 3, and u = 1 + ζn + ζ−1
n in the cyclotomic field

K = Q(ζn). Then
1

4

√
n ≤ ∥Log(u)∥ ≤

√
2 log 3

√
n.

Proof. In K = Q(ζn), the log-unit lattice is obtained from the φ(n)
2

embeddings ob-

tained from sending ζn to ζjn, for elements of E = {1 ≤ j ≤ 1
2
pk| gcd(j, p) = 1}. We

have

Log(u) = (2 log |1 + ζn + ζ−1
n |, . . . , 2 log |1 + ζ

pk−1
2

n + ζ
− pk−1

2
n |).

Calculating the norm,

∥Log(u)∥2 =
∑
j∈E

(2 log |1 + ζjn + ζ−j
n |)2 =

∑
j∈E

(
2 log

∣∣∣∣1 + 2 cos

(
2πj

n

)∣∣∣∣)2

. (7.2)
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For j
n
≤ 1

8
, cos

(
2πj
n

)
≥ cos

(
π
4

)
=

√
2
2
. Additionally, 2 log(1 +

√
2) > 1, so by only

looking at the first quarter of the terms of the sum, and supposing pk ≥ 16 so that

these terms exist,

∥Log(u)∥2 ≥
⌊
pk − 1

8

⌋
(2 log(1 +

√
2))2 ≥

⌊
pk − 1

8

⌋
≥ pk

16
.

For pk < 16 we can easily check that the lower bound is still true.

For the upper bound, simply note that for any real x, log |1 + 2 cos(x)| ≤ log 3,

from which we get

∥Log(u)∥2 ≤
∑
j∈E

(2 log 3)2 = 4#E log2 3 = 2φ(n) log2 3 < 2n log2 3,

taking the square root we conclude.

All in all, we get a vector of Λ of order of magnitude Θ(
√
n), demonstration a

large gap between the behaviour of the log-unit lattice and the predictions from the

Gaussian heuristic.

Theorem 7.2.5. Let n = pk be a prime power with p ̸= 3. If Λ denotes the log-unit

lattice of the n-th cyclotomic number field, we have

λ1(Λ)

λ
= O(n− 1

2 ),

where λ denotes the shortest vector length predicted by the Gaussian heuristic.

Proof. From Lemma 7.2.3 we get that the vector Log(u) is in Λ, for u = 1+ ζn+ ζ
−1
n .

From Lemma 7.2.4 we get that ∥Log(u)∥ = O(
√
n), therefore λ1(Λ) = O(

√
n). We

have already discussed why λ = Θ(n), therefore we get the desired result.

Remark 7.2.6. Our proof is valid for all prime-power cyclotomics with p ̸= 3. If

n = 3k, we can derive similar bounds on the size of the log-unit Log(u) = Log(1+ζn).

Figure 7.1 has two purposes, first it illustrates Theorem 7.2.1 and Equation 7.1

by plotting in green the theoretical value of the predicted λ in
√

φ(n)n
4πe

and in blue

the actual value of
√

φ(n)/2−1
2πe

vol(Λ)
1

φ(n)/2−1 , for prime conductors less than 150. Its

second purpose is to confirm Lemma 7.2.4 by plotting in red the true length of Log(1+

ζn + ζ−1
n ) for the first primes n. Even though the conductors are still very small and

the result of Theorem 7.2.5 is asymptotic, we can already see that predictions in

blue behave linearly, whereas some shorter vectors behave as
√
n. Experiments were

conducted with SageMath [The22].
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Figure 7.1: Comparing ∥Log(u)∥ with the Gaussian heuristic prediction for λ1(Λ)

7.3 A Bold Conjecture?

As we have seen since the start of this chapter, [BL21] argues that the log-S-unit

lattice does not behave like a typical random lattice, meaning that the analysis of

the S-unit attack in [PMHS19] does not encompass the whole truth, as the heuristic

assumptions needed for the Laarhoven algorithm from [Laa17] do not hold in the

same way. In fact, the lattice is more orthogonal, therefore it should reduce much

better. The following controversial result was conjectured by Daniel J. Bernstein in

a 2021 talk at SIAM [Ber21] presenting joint work with Eisenträger, Lange, Rubin,

Silverberg and van Vredendaal on S-unit attacks.

Conjecture 7.3.1 ([Ber21]). Under GRH and classical number-theoretic assumptions

on the distribution of smooth-norm ideals in power-of-two cyclotomic fields, there

exists a quantum algorithm that runs in time exp(Õ(
√
n)) and solves Ideal-svp with

approximation factor γ = Õ(poly(n)).

Remark 7.3.2. It is not clear if the conjecture should also be extended to other prime-

power cyclotomics, namely smooth-degree prime-power cyclotomics, i.e. prime-power

cyclotomics for small primes. However as most cryptosystems rely on the power-of-two

case, the conjecture as stated above could already have some serious consequences.

Recall that so far (see Table 5.3), the best additive or multiplicative algorithms

that find a polynomial approximation factor Ideal-svp run in exponential time. If

54



Conjecture 7.3.1 is true, Ideal-γ-svp with a polynomial approximation factor can be

solved in subexponential time for power-of-two cyclotomics. This renders the Ring-

lwe to Ideal-svp security reduction from Theorem 4.3.4 useless: Ring-lwe is at

least as hard as Ideal-svp, however Ideal-svp is not difficult. Before we panic, it is

important to note a few things:

• Conjecture 7.3.1 is my own interpretation of the conjectured result, and may

inaccurately reflect the exact assumptions made by its authors, most likely by

being slightly weaker.

• Conjecture 7.3.1 has never before been formally stated, analysed or properly

justified.

• An attack on Ideal-svp is not known to directly transpose into an attack on

Ring-lwe, therefore the attack would only undermine the power of its security

reduction.

• NIST Lattice-based standardised schemes rely on Module-lwe, which is at least

as hard as Ring-lwe, and would not be directly endangered by the attack.

After the initial talk [Ber21], the conjecture was very recently mentioned again

at the end of an invited talk by Lange at ANTS in August 2022 [Lan22], and briefly

in another paper by Bernstein at the same conference [Ber22a]. This last paper is

accompanied by software testing a simplified version of the claimed attack, on prime-

cyclotomic number fields of degree 23 ≤ p ≤ 43. Unfortunately, these experiments are

conducted on fields of too small degrees to conclude anything meaningful about the

asymptotic claim. The software and its explanation can be found at [Ber22b]. In this

final part of the dissertation, we attempt to reproduce the explanations from [Ber21],

[Ber22a] and [Ber22b] that could corroborate Conjecture 7.3.1.

The proposed algorithm is for the n-th cyclotomic number field, where n is smooth,

in the sense that it has only small prime factors. This is in particular true for powers

of two, which is important in the cryptographic setting. The key difference with

previous S-unit attacks such as [PMHS19] is to allow for a larger choice of prime

ideals in S. Fix S = {p prime | N (p) ≤ y} where y is a smoothness bound of size

exp(n1/2+o(1)). The first step is to precompute small S-units of OK , i.e. those whose

Log-norm squared is less than n1/2+o(1).
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Heuristic 7.3.3. In a smooth-degree cyclotomic number field of conductor n, let

y = exp(n1/2+o(1)) and S = {p prime | N (p) ≤ y}. Then the number of S-units of

Log-norm squared less than n1/2+o(1) is exp(n1/2+o(1)).

Heuristic 7.3.3 predicts that there should be approximately exp(n1/2+o(1)) small

S-units. The process of finding them is a sieving process that Bernstein calls filtering :

taking small ring elements and passing them into a filter that checks if they are S-

units or not. His very recent paper [Ber22a] facilitates the filtering process, by giving

an algorithm that computes the algebraic norm of an element of OK of Log-norm

squared less than n1/2+o(1) in time Õ(n), in the case of smooth-degree number fields.

Heuristic 7.3.4. In a smooth-degree cyclotomic number field of conductor n, given

exp(n1/2+o(1)) random S-units of Log-norm squared less than n1/2+o(1), they span the

full S-unit group with almost certain probability.

With a subexponential y in an NFS-like way, heuristic 7.3.4 says that the precom-

putation of a database of y(1+o(1)) S-units is enough to get generators of the S-unit

group. Bernstein notes that many speed-up tricks can be added to the mix in order

to compute small-norm S-units faster, ie by explicitely constructing them with Ja-

cobi sums, or deriving more S-units from those known already by exploiting subfield

structure and using automorphisms. This concludes the pre-processing phase.

Given an ideal a whose short vectors we would like to find, the online phase of the

algorithm proposed by Bernstein uses a single call to the usual quantum algorithm

of [BS16] to compute a generator g of a principal ideal equal to a times powers of

S-units.

It then replaces g by gu/v where u, v are from the precomputed database and are

such that Log(g) + Log(u) − Log(v) is close to Log(a), makes sure that g ∈ a by

multiplying by the appropriate prime ideals and their conjugates, and repeats this

process y times. This is very similar to the online phase of Laarhoven’s cvp with pre-

processing algorithm from [Laa17]. Finally, the algorithm outputs g, which should be

a short element of a.

Heuristic 7.3.5. In a smooth-degree cyclotomic number field of conductor n, given

exp(n1/2+o(1)) S-units of Log-norm squared less than n1/2+o(1) that span the full S-

unit, an S-generator g of an ideal a of OK reduces via the log-S-unit lattice in time

exp(Õ(
√
n)) to an element of a of Log-norm within a polynomial factor of the shortest

length λ1(a).
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Heuristic would ensure the validity of the main conjecture. As things stand, it

seems that Heuristic 7.3.3 is very likely and is supported by various experiments,

and that Heuristic 7.3.4 is also likely as experimentally and under GRH, problems

seem to arise only when the number fields are unbalanced (e.g. not in the smooth

case). However the controversial point is the analysis of the reduction in Heuristic 7.3,

where all attempts to analyse rely on lattice heuristics that are very difficult to justify

properly.
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Chapter 8

Conclusion

In this dissertation, we have surveyed the state-of-the-art classical and quantum al-

gorithms that solve the Approximate Shortest Vector Problem in ideal lattices. We

have seen that the hardness of this problem is at the foundation of the security of

lattice-based post-quantum cryptosystems that are to be standardised. General lat-

tices are very well studied and benefit from strong security guarantees, but recent

works have shown that because the lattices used in modern cryptosystems have a

lot more structure than general lattices, stronger algorithms exploiting this structure

and relying on quantum computers exist.

These so-called unit or S-unit attacks rely on special lattices, the log-unit and

log-S-unit lattices. Previous works analysed the speed of S-unit attacks using the

assumption that these lattices could be studied as if they were generated randomly.

We extended recent results that quantify how different the log-unit lattice really is

from the random models, in the case of prime-power cyclotomic fields. These results

could foreshadow that the power of S-unit attacks has been underestimated, and that

the security of supposedly quantum-resistant schemes that are being deployed today

is not as strong as we thought.

However, the conjectured subexponential attack on Ideal-svp with polynomial

approximation factor remains very poorly documented and is believed by some experts

to be exaggerated. Nevertheless, it makes for a burning topic of debate in the post-

quantum cryptography community. The field is evolving fast, and will have massive

consequences on global privacy and information security in the future. It lies at the

intersection between many areas in science, is still at a very early stage, and would

benefit enormously from greater and more coordinated efforts towards cryptanalysis:

lots of aspects of structured lattices and S-unit attacks remain to be understood, and

for that researchers with backgrounds in number theory, quantum computing and

cryptography will all have to work towards the same objectives.
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