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What is a lattice?

Choose your definition:

• A discrete (additive) subgroup of Rn.

• A free Z-submodule of Rn.

• All Z-linear combinations of basis vectors b1, . . . ,bm ∈ Rn:

L(b1, . . . ,bm) :=
{

m∑
i=1

xibi : x ∈ Zm

}
= ZmB.

A lattice Λ is full-rank in Rn if span(Λ) = Rn, e.g. if B is nonsingular.

Quick fact

Two bases B1 and B2 generate the same lattice iff B1 = UB2 for some U ∈ SLn(Z).
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Random real lattices: your typical lattice

Definition: Volume of a lattice

If Λ = L(B) is a full-rank lattice of Rn, then its volumea is

covol(Λ) := vol(Rn/Λ) = | det(B)|.
aCryptographers use the notation vol(Λ), mathematicians covol(Λ).

• The space of all lattices of (co)volume 1 is Xn := SLn(R)/SLn(Z).

The Siegel (Haar) measure

There exists a unique SLn(Z)-invariant probability measure on Xn.

• This is a satisfying way to define a random lattice.
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Some lattices from crypto are not typical

Gaussian Heuristic

It follows from works of Siegel and Rogers that a random lattice Λ satifies

λ1(Λ)

vol(Λ)1/n
= (1 + o(1))

1

vol(Bn(1))1/n
≈

√
n

2πe

with probability (1− o(1)) as n grows.

This fails quite strongly for hypercubic lattices (i.e. with an orthonormal basis).
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Hard algorithmic problems in lattice crypto (1)

O

Λ1

Λ2

Λ2=O ·Λ1

Lattice Isomorphism Problem (LIP)

Given two lattices Λ1,Λ2 ⊂ Rn such that
there exists O ∈ On(R) for which
Λ1 = O · Λ2, recover such an O.

• If Λ1 and Λ2 are hypercubic, we call
this problem ZLIP.
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Hard algorithmic problems in lattice crypto (2)

The Shortest Vector Problem (SVP)

Given B a basis of a lattice Λ ⊂ Rn, find a
v ∈ Λ such that ∥v∥2 = λ1(Λ).

• ZLIP reduces to SVP.

• So does almost all of lattice crypto.

B
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Main results

Motivating question: can we provably show that some lattices can be reduced
using SVP oracles in dimensions substantially smaller than their rank n?

Previous work:

- Heuristic estimates.

- Dimension n/2 SVP oracles are enough to reduce Zn [Duc23].

Our results:

- Oracles in [Duc23] can be relaxed to approximate-SVP oracles.

- For many NTRU instances: n/2 is also sufficient.

We do not claim any security loss on ZLIP or NTRU based schemes.
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Roadmap

I. Intro: Building Blocks

II. A Primal/Dual Reduction Framework

III. Application: Hypercubic Lattices

IV. Application: NTRU Lattices

V. Comparison with Heuristic Reduction
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Gram-Schmidt Orthogonalisation

GSO

For a lattice L(b1, . . . ,bn), its Gram-Schmidt vectors b⋆1, . . . ,b
⋆
n are defined by the

following iterative procedure:

. b⋆1 := b1;

. b⋆i := π(b1,...,bi−1)⊥(bi ).

• GSO preserves volumes:

vol(L(b1, . . . ,bi )) = vol(L(b⋆1, . . . ,b⋆i )) =
i∏

j=1

∥b⋆j ∥.
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Lattice algorithms

b2
b1

Figure: Gram-Schmidt profile

lo
g
∥b

⋆ i
∥

Convert a bad basis B into...
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Lattice algorithms

b2

b1

lo
g
∥b

⋆ i
∥

... a better basis B.
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Building block: SVP Reduction

lo
g
∥b

⋆ i
∥

lo
g
∥b

⋆ i
∥

γ-SVP oracle

Outputs a basis B whose first Gram-Schmidt norm is ∥b⋆1∥ ≤ γλ1(L(B)).
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Blockwise Reduction

BKZ algorithm:

. State of the art lattice reduction.

. Calls SVP oracles on projected sub-
lattices of dimension β.

Security estimates for lattices:

. Predict the smallest β that reduces
the lattice.

. This is heuristic.
Dimension n

Dim-β

SVPDim-β

SVPDim-β

SVPDim-β

SVPDim-β

SVPDim-β

SVPDim-β

SVP

13 / 47



Blockwise Reduction

BKZ algorithm:

. State of the art lattice reduction.

. Calls SVP oracles on projected sub-
lattices of dimension β.

Security estimates for lattices:

. Predict the smallest β that reduces
the lattice.

. This is heuristic.
Dimension n

Dim-β

SVP

Dim-β

SVPDim-β

SVPDim-β

SVPDim-β

SVPDim-β

SVPDim-β

SVP

13 / 47



Blockwise Reduction

BKZ algorithm:

. State of the art lattice reduction.

. Calls SVP oracles on projected sub-
lattices of dimension β.

Security estimates for lattices:

. Predict the smallest β that reduces
the lattice.

. This is heuristic.
Dimension n

Dim-β

SVPDim-β

SVP

Dim-β

SVPDim-β

SVPDim-β

SVPDim-β

SVPDim-β

SVP

13 / 47



Blockwise Reduction

BKZ algorithm:

. State of the art lattice reduction.

. Calls SVP oracles on projected sub-
lattices of dimension β.

Security estimates for lattices:

. Predict the smallest β that reduces
the lattice.

. This is heuristic.
Dimension n

Dim-β

SVPDim-β

SVPDim-β

SVP

Dim-β

SVPDim-β

SVPDim-β

SVPDim-β

SVP

13 / 47



Blockwise Reduction

BKZ algorithm:

. State of the art lattice reduction.

. Calls SVP oracles on projected sub-
lattices of dimension β.

Security estimates for lattices:

. Predict the smallest β that reduces
the lattice.

. This is heuristic.
Dimension n

Dim-β

SVPDim-β

SVPDim-β

SVPDim-β

SVP

Dim-β

SVPDim-β

SVPDim-β

SVP

13 / 47



Blockwise Reduction

BKZ algorithm:

. State of the art lattice reduction.

. Calls SVP oracles on projected sub-
lattices of dimension β.

Security estimates for lattices:

. Predict the smallest β that reduces
the lattice.

. This is heuristic.
Dimension n

Dim-β

SVPDim-β

SVPDim-β

SVPDim-β

SVPDim-β

SVP

Dim-β

SVPDim-β

SVP

13 / 47



Blockwise Reduction

BKZ algorithm:

. State of the art lattice reduction.

. Calls SVP oracles on projected sub-
lattices of dimension β.

Security estimates for lattices:

. Predict the smallest β that reduces
the lattice.

. This is heuristic.
Dimension n

Dim-β

SVPDim-β

SVPDim-β

SVPDim-β

SVPDim-β

SVPDim-β

SVP

Dim-β

SVP

13 / 47



Blockwise Reduction

BKZ algorithm:

. State of the art lattice reduction.

. Calls SVP oracles on projected sub-
lattices of dimension β.

Security estimates for lattices:

. Predict the smallest β that reduces
the lattice.

. This is heuristic.
Dimension n

Dim-β

SVPDim-β

SVPDim-β

SVPDim-β

SVPDim-β

SVPDim-β

SVPDim-β

SVP

13 / 47



Two very special lattices

Hypercubic Lattices:
. Orthonormal basis

. Used in Lattice Isomorphism
Problem (ZLIP) and HAWK
[DvW22, DPPvW22]

NTRU Lattices:
. Module structure

. Used in many schemes and
standards: NTRU, Falcon, ...
[HPS98, CDH+20, FHK+19]

- In general, lattice reduction estimates are heuristic and rely on low-dim
experiments and predictions on the behaviour of lattice algorithms (BKZ).
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Provable reduction with smaller blocks: what do we know?

Question

Is it possible to provably solve SVP in special families of lattices of rank n using only
SVP-oracles in dimension β = αn for a constant α < 1?

For Hypercubic Lattices:

- In 2023, Ducas proved that
α = 1

2 suffices [Duc23].

For NTRU Lattices:

- Until now, no α better than 1.

- In 2006, Gama, Howgrave-
Graham and Nguyen conjec-
tured α < 1 [GHN06].
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Duality (1)

Dual lattice

Every lattice Λ can be paired up with its dual latticea

Λ× := {w ∈ span(Λ) : ⟨w, v⟩ ∈ Z for all v ∈ Λ}.
aNotations vary a lot in the literature: Λ∗, Λ∨, Λ̂,...

• dim(span(Λ)) = dim(span(Λ×));

• vol(Λ) = vol(Λ×)−1.

Hypercubic lattices are isodual (Λ = Λ×).
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Duality (2)

Dual basis

If Λ has basis (b1, . . . ,bn), then there is a unique dual basis (d1, . . . ,dn) of Λ× such
that ⟨bi ,dj⟩ = δi ,j (Kronecker symbol) for all i , j .

• For all i ,
b⋆i

∥b⋆i ∥2
∈ L(b1, . . . ,bi )×.

• In particular, dn = b⋆n/∥b⋆n∥2 and ∥dn∥ = ∥b⋆n∥−1.
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Building block: Dual-SVP Reduction

lo
g
∥b

⋆ i
∥

lo
g
∥b

⋆ i
∥

γ-Dual-SVP oracle

Outputs a basis B whose last dual Gram-Schmidt norm is

∥d⋆n∥ = ∥b⋆n∥−1 ≤ γλ1(L(B)×).
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Primitivity, quotients and projections

Primitive sublattice

A sublattice Λ′ of Λ is primitive if span(Λ′) ∩ Λ = Λ′. In
this case, πΛ′⊥(Λ) is a lattice.

Quotient

If Λ′ is a primitive sublattice of Λ, then we can identify
the quotient Λ/Λ′ with the lattice πΛ′⊥(Λ).

For a primitive Λ′:

Λ/Λ′ = πΛ′⊥(Λ) = (Λ× ∩ Λ′⊥)×.

Λ′

Λ

Λ/Λ′
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Primal/Dual Reduction: A nice tool for provable reduction

Λ = L(b1, . . . ,bn) L = L(b1, . . . ,bk) N = L(b1, . . . ,bk+1)

Λ

L
N

Dimension n = 2k + 1

lo
g
∥b

⋆ i
∥

We know that

vol(N) = vol(L)∥b⋆k+1∥.
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Slide-inspired Reduction: Primal step

Λ = L(b1, . . . ,bn) L = L(b1, . . . ,bk) N = L(b1, . . . ,bk+1)

Λ

L
N

Dimension n = 2k + 1

Dim-(k + 1)

SVP(Λ/L)

SVP(Λ/L)

lo
g
∥b

⋆ i
∥

After SVP-reduction:

∥b⋆k+1∥ = λ1(Λ/L).
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Slide-inspired Reduction: Dual step

Λ = L(b1, . . . ,bn) L = L(b1, . . . ,bk) N = L(b1, . . . ,bk+1)

Λ

L
N

Dimension n = 2k + 1

Dim-(k + 1)

SVP(Λ/L)

Dim-(k + 1)

Dual-SVP(N)

D-SVP(N)

lo
g
∥b

⋆ i
∥

After D-SVP-reduction:

∥b⋆k+1∥−1 = λ1(N
×).
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Slide-inspired Reduction: Analysis

How does each Primal/Dual step change vol(L)?

After the Primal step

vol(N) = vol(L)λ1(Λ/L)

Finally

vol(L′)

vol(L)
= λ1(Λ/L)λ1(N

×)

After the Dual step

vol(N) = vol(L′)λ1(N
×)−1

. If λ1(Λ/L)λ1(N
×) < 1− 1

poly(n) , we win!

. For general lattices, we can only use Minkowski’s theorem
to bound λ1(Λ/L) and λ1(N

×).
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Ducas’ idea: bounding λ1 for projections of Zn

Lemma (From [Duc23])

Let L be a primitive sublattice of Zn of rank k and volume vol(L) > 1, then

λ1(Zn/L) ≤
√
1− 1

n
.

• Gives much stronger bound on λ1(Λ/L)λ1(N
×) than Minkowski’s theorem.

• vol(L) decreases by at least (1− 1
n ) at each Primal/Dual step.
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Projecting Z2 onto a line: Intuition from pictures

L

• λ1(L ∩ Z2) = 1;

• λ1(πL(Z2)) = 1.

L

• λ1(L ∩ Z2) > 1;

• λ1(πL(Z2)) < 1√
2
.

L

• λ1(L ∩ Z2) > 1;

• λ1(πL(Z2)) = 1√
2
.
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A more general result: forcing small vectors into projections of Zn

Key Lemma

Let L be a primitive sublattice of Zn of rank k such that λ1(L) > 1, then

λ1(Zn/L) ≤
√
1− k

n
.

Proof

First prove that
∑n

i=1 ∥πL⊥(ei )∥2 = n − k . The condition λ1(L) > 1 means
∀i , πL⊥(ei ) > 0. Hence 0 < ∥πL⊥(ei )∥2 ≤ 1− k

n for some i .

• In particular if k = n
2 , then λ1(Zn/L) ≤ 1√

2
.
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Modified algorithm: relaxing the approximation factor

Input: A bad basis of a hypercubic Λ

Main loop:

I. Check for unit vectors in L

II. γ-SVP reduce Λ/L

III. Check for unit vectors in (Λ/N)×

IV. γ-Dual-SVP reduce N

Each line only uses a γ <
√
2 approximation oracle in halved

dimension. vol(L) decreases by at least:

γ2λ1(Λ/L)λ1(N
×) = γ2λ1(Λ/L)λ1(Λ

×/(Λ/N)×) ≤ γ2/2 = 1−ε.
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Does it matter? Perspectives

- The best (provable) algorithms for ZLIP run in 2n/2+o(n).

- For large enough (constant) γ, dim n/2 γ-SVP runs in 20.401n+o(n), provably.

Open problems:

. What is the real cost of solving
√
2-SVP?

. Can we break the n/2 barrier for ZLIP?

. Is the “easiest lattice” really that hard?
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Observation: a similar algorithm works more generally

Using exact-SVP-oracles: at each step vol(L) is multiplied by λ1(Λ/L)λ1(N
×).

Quick Lemma

If λ1(L) > λ1(Λ), then λ1(Λ/L) ≤ λ1(Λ).

Consequence: Testing λ1(L) > λ1(Λ) with an SVP-oracle

=⇒ at each step vol(L) is multiplied by at most λ1(Λ)λ1(Λ
×).

Surely no reasonable lattice family satisfies λ1(Λ)λ1(Λ
×) < 1− ε ??
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The NTRU lattice and its dual

The NTRU lattice has a public basis and its dual of the form

B =

(
qIn/2 0
H In/2

)
and B× =

( 1
q In/2 − 1

qH
T

0 In/2

)
,

where H is a circulant matrix.
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The symplectic nature of NTRU

Lemma (rescaled NTRU is isodual)

If Λ is a NTRU lattice with modulus q over a ring Z[X ]/(X n ± 1), then Λ and qΛ× are
isometric.

For such lattices, λ1(Λ)λ1(Λ
×) = λ1(Λ)2

q .
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So when is λ1(Λ)λ1(Λ
×) < 1− ε ??

Upper bound on λ1(Λ)λ1(Λ
×) for various NTRU parameters

Lattice λ1(Λ)λ1(Λ
×) 1

2λ1(Λ)λ1(Λ
×) Approx factor

NIST-1 [CDH+20] .2897 .1449 2.628

NIST-3 [CDH+20] .3444 .1722 2.410

NIST-5 [CDH+20] .2581 .1291 1.969

Conclusion: Many NTRU instances are provably solvable with n/2 SVP oracles only.
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Average behaviour of λ1(Λ)λ1(Λ
×)

• The quantity γ′(Λ) :=
√

λ1(Λ)λ1(Λ×) was introduced by Martinet and called the
dual Hermite invariant of Λ;

• γ′(Λ) is independent of vol(Λ);

• For a random lattice of Xn, we expect each term to be of size
√

n
2πe ;

• Södergren and Strömbergsson studied the independence of limit distributions of
shortest vector statistics for Λ and Λ×. We can likely deduce that

E(λ1(Λ)λ1(Λ
×)) = (1 + o(1))

n

2πe
.
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The Primal Attack Model

Question: For which blocksize β
does BKZ-β recover the secret vec-
tor s?

Since [ADPS16], the heuristic value for β is taken as the smallest such that

Erandom dim β subspace F (πF (∥s∥)) < EBKZ-β reduction(∥b⋆n−β+1∥).

• If this holds, the projection of the secret onto the last BKZ block is short enough
that the SVP oracle is likely to recover it.

• Very heuristic, yet used by all lattice schemes to estimate concrete security.
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Comparing with Primal Attack Asymptotics

Asymptotically, how close are the best provable and heuristic estimates?

Lattice (dim n) Provable blocksize Heuristic blocksize (GSA + 2016 est.)

Hypercubic n/2 + o(n) n/2− o(n)

NTRU1 n/2 + o(n) 4n/9− o(n)

• The difference comes from the public NTRU q-vectors, that are better reduced
than what one would expect from BKZ-n/2.

1Assuming q = Θ(n) and λ1(Λ) = Θ(
√
n).
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The Primal Attack Model - Multi Target Mode

Lattice estimators like [DSDGR20] have an option for multiple targets, when

λ1(Λ) = . . . = λk(Λ).

Indeed E
(
min1≤i≤k ∥π(si )∥2

)
< E

(
∥π(s1)∥2

)
, so the primal attack blocksize should

be smaller.

Claim

Asymptotically, a linear number of (independent) short secrets does not change the
first order terms in the asymptotic blocksize.
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The Primal Attack Model - Multi Target Mode

0 50 100 150 200 250

k

−6

−4

−2

0

2

lo
g
(·)

GSA for ‖b⋆
k‖

Expectation for ‖πk(e)‖
Expectation for min ‖πk(ei)‖
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Recap/Takeaway

Conclusions:

. Like Zn, NTRU’s geometry makes it easier to provably reduce.

. We give an algorithm that uses dim n/2 SVP-oracles.

. Those oracles can be relaxed by a constant γ.

. We help reduce the gap between provable and heuristic results.

. We provide new insights into the asymptotics of the primal attack.
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The End

Bonus questions:

. Which of NTRU and ZLIP is easier?

. Can we exploit isoduality better?

. Can Primal/Dual reduction be made practical?

Check out the paper at:

iacr.org/2024/601.
(PQCrypto’2024)

Thank you
For listening! :-)
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Post-quantum key exchange - A new hope.
In Proc. 25th USENIX, pages 327–343. USENIX, 2016.

Cong Chen, Oussama Danba, Jeffrey Hoffstein, Andreas Hulsing, Joost Rijneveld,
John M. Schanck, Tsunekazu Saito, Peter Schwabe, William Whyte, Keita
Xagawa, Takashi Yamakawa, and Zhenfei Zhang.
Ntru algorithm specifications and supporting documentation, 9 2020.
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