An inverse problem for isogeny volcanoes
 LFANT Seminar

Henry Bambury

DGA, DIENS, Équipe Inria CASCADE
11th of April 2023

Disclaimer

- Joint work with Francesco Campagna ${ }^{1}$ and Fabien Pazuki ${ }^{2}$
- Talk based on https://arxiv.org/abs/2210.01086
- I am now a PhD student in lattice-based crypto

[^0]
Outline of the talk

- Introduction to isogeny graphs in the easiest setting
- The connected components: Volcano exploration
- Solving the inverse problem

Isogeny graphs: (brief) history and applications

Original work

- David Kohel's PhD thesis (1996)

A computational tool

- Computing endomorphism rings
- Computing modular/Hilbert class polynomials
- Point counting

In cryptography

- First proposal by Couveignes (1997)
- Post-Quantum attempts: SIDH, CSIDH, etc

Defining vertices: j-invariants

j-invariants

Let $E / \mathbb{F}_{p}: y^{2}=x^{3}+a x+b$ be an elliptic curve, the j-invariant of E is

$$
j(E)=j(a, b)=1728 \frac{4 a^{3}}{4 a^{3}+27 b^{2}}
$$

- p possible j-invariants, all are reached.
- Encompass classes of $\overline{\mathbb{F}}_{p}$-isomorphisms $(x, y) \mapsto\left(u^{2} x, u^{3} y\right)$.
- $j=0$ and $j=1728$ (in \mathbb{F}_{p}) are special.

Defining edges: isogenies

Isogenies

An isogeny is a non-constant homomorphism $\varphi: E \rightarrow E^{\prime}$.
It is surjective and has finite kernel $C=\operatorname{ker} \varphi$.
The degree of φ is $\operatorname{deg} \varphi=\# C$.

- An isogeny φ is defined over \mathbb{F}_{p} if $\operatorname{ker} \varphi$ is stable by Galois action.
- In this talk, isogenies are equivalent up to their kernel.
- Small degree isogenies are easy to compute.

Ordinary vs supersingular

Endomorphism ring

Let E / \mathbb{F}_{p} be an elliptic curve, and k a field. Then the endomorphism ring $\operatorname{End}_{k}(E)$ is the ring of all k-rational isogenies from E to itself.

- When $\operatorname{End}_{\bar{F}_{p}}(E)$ is an order in an imaginary quadratic field, E and $j(E)$ are called ordinary.
- The rest is supersingular.
- Over \mathbb{F}_{p}, we have $O(\sqrt{p})$ supersingular j -invariants.
- Every $\overline{\mathbb{F}}_{p}$-isogeny between ordinary curves with $j \neq 0,1728$ has an equivalent \mathbb{F}_{p}-isogeny .

Quick reminder: imaginary quadratic orders

Orders are subrings of the ring of integers.

Maximal order

In $K=\mathbb{Q}(\sqrt{-D})$,
$\mathcal{O}_{K}=\mathbb{Z}[\sqrt{-D}]$ or $\mathbb{Z}\left[\frac{1+\sqrt{-D}}{2}\right]$.

Quadratic orders

Orders in $K=\mathbb{Q}(\sqrt{-D})$ are of the form $\mathcal{O}=\mathbb{Z}+f \mathcal{O}_{K}$ with $f \in \mathbb{Z}_{>0}$ (think lattices).

- We have a correspondence between negative integers $\equiv 0,1 \bmod 4$ and orders.
- $f=\left[\mathcal{O}_{K}: \mathcal{O}\right]$ is called the conductor of \mathcal{O}.
- $\operatorname{Disc}(\mathcal{O})=f^{2} \operatorname{Disc}\left(\mathcal{O}_{K}\right)$.
- We define $\mathrm{Cl}(\mathcal{O})$ as usual.
- Class number notation:

$$
h(\mathcal{O})=\# \mathrm{Cl}(\mathcal{O})
$$

So what is the isogeny graph??

- $p>3$ is a large prime.
- $\ell \neq p$ is a small prime.

Isogeny graph

The ordinary ℓ-isogeny graph $\mathcal{G}_{\ell}\left(\mathbb{F}_{p}\right)$ has set of vertices all ordinary j-invariants in \mathbb{F}_{p} and edges all \mathbb{F}_{p}-rational ℓ-isogenies.

- Up to isomorphism of curves, up to equivalence of isogeny.
- $\mathcal{G}_{\ell}\left(\mathbb{F}_{p}\right)$ can be seen as undirected outside of $j=0,1728$.
- Possible self-loops, double edges and double self-loops.
- Roots of $\Phi_{\ell}(X, Y)$ with multiplicity.

Pictures!

Structure: Frobenius, trace and cordilleras

Structure: Frobenius, trace and cordilleras

The Frobenius equation

Let π be the Frobenius endomorphism associated to E / \mathbb{F}_{p} where $j(E) \neq 0,1728$ and $K=\operatorname{End}(E) \otimes_{\mathbb{Z}} \mathbb{Q}$. Then

$$
4 p-t^{2}=-f^{2} \operatorname{Disc}\left(\mathcal{O}_{K}\right)
$$

where $t=\operatorname{Tr}(\pi)$ and $f=\left[\mathcal{O}_{K}: \mathbb{Z}[\pi]\right]$.

- $j(E) \neq 0,1728$ means $\operatorname{Disc}(K)<-4$ and $\# \operatorname{Aut}(E)=2$: the equation in red has at most one solution $(t, f) \in \mathbb{N}^{2}$.
- In fact $t=p+1-\# E$: we have $|t| \leq\lfloor 2 \sqrt{p}\rfloor$.
- Isogenies preserve $\# E$.
- Same Frobenius \Longleftrightarrow same $\operatorname{End}(E) \otimes_{\mathbb{Z}} \mathbb{Q} \Longleftrightarrow$ same trace up to sign \Longleftrightarrow isogenous up to equivalence.

Structure: Frobenius, trace and cordilleras

Cordillera

The t-cordillera ${ }^{a}$ of $\mathcal{G}_{\ell}\left(\mathbb{F}_{p}\right)$ is the subgraph induced by the following set of vertices:

$$
\mathcal{V}_{t}=\left\{j(E): E / \mathbb{F}_{p} \text { and } p+1-\# E\left(\mathbb{F}_{p}\right)= \pm t\right\}
$$

${ }^{\text {a }}$ Terminology credit: Miret, Sadornil, Tena, Tomàs and Valls (2007)

- 1 positive $t \Longleftrightarrow 1$ imaginary quadratic field $\left(^{*}\right)$.
- All $\mathcal{O}=\operatorname{End}_{\mathbb{F}_{p}}(E)$ for E / \mathbb{F}_{p} such that $j(E) \in \mathcal{V}_{t}$ satisfy

$$
\mathbb{Z}\left[\pi_{t}\right] \subseteq \mathcal{O} \subseteq \mathcal{O}_{K}
$$

- All ordinary traces live in $\llbracket 1,\lfloor 2 \sqrt{p}\rfloor \rrbracket$.
- There can be no edges between cordilleras $\left(^{*}\right)$.
- Over \mathbb{F}_{p}, no cordillera is empty (Waterhouse 1969).

Structure: Horizontal vs Vertical isogenies

Lemma

Let $\varphi: E_{1} \rightarrow E_{2}$ be an ℓ-isogeny. Then

$$
\left[\mathcal{O}_{1}: \mathcal{O}_{2}\right]=\frac{1}{\ell}, 1, \text { or } \ell .
$$

- φ increases \mathcal{O} : vertical ascending.
- φ decreases \mathcal{O} : vertical descending.
- φ leaves \mathcal{O} unchanged: horizontal.

$$
\mathbb{Z}[\pi] \subseteq \mathbb{Z}+m \ell^{d} \mathcal{O}_{K} \subset \mathbb{Z}+m \ell^{d-1} \mathcal{O}_{K} \subset \ldots \subset \mathbb{Z}+m \mathcal{O}_{K} \subseteq \mathcal{O}_{K}
$$

Structure: Volcano Belts

Belts

We partition cordilleras into belts: subgraphs in which all orders have conductors of the form $m \ell^{k}$, where m is coprime to ℓ.

$$
\mathbb{Z}[\pi] \subseteq \mathbb{Z}+m \ell^{d} \mathcal{O}_{K} \subset \mathbb{Z}+m \ell^{d-1} \mathcal{O}_{K} \subset \ldots \subset \mathbb{Z}+m \mathcal{O}_{K} \subseteq \mathcal{O}_{K}
$$

In a given cordillera,
$\{$ belts $\} \longleftrightarrow$ divisors of the conductor of $\mathbb{Z}[\pi]$ coprime to $\ell\}$

Structure: Levels and ascending isogenies

Levels

A vertex of $\mathcal{G}_{\ell}\left(\mathbb{F}_{p}\right)$ with order $\mathbb{Z}+m \ell^{k} \mathcal{O}_{K}$ lies at level k if $(\ell, m)=1$. If $\mathbb{Z}[\pi]=\mathbb{Z}+f \mathcal{O}_{K}$ then $d=v_{\ell}(f)$ is called the depth.

An ℓ-cordillera and its belts have a unique depth (*).

Lemma

Let E / \mathbb{F}_{p} with $\operatorname{End}(E)=\mathbb{Z}+v \mathcal{O}_{K}$, where $\ell \mid v$. Then there exists a vertical ascending ℓ-isogeny from $j(E)$.

Structure: How many curves at a given level?

Lemma

Let \mathcal{O} be an order of discriminant D in $K=\mathbb{Q}\left(\sqrt{t^{2}-4 p}\right)$ where $|t| \in \llbracket 1,\lfloor 2 \sqrt{p}\rfloor \rrbracket$. If $\mathbb{Z}[\pi] \subset \mathcal{O}$ Then the set $\mathrm{Ell}_{F_{p}}(\mathcal{O})$ of j-invariants with endomorphism ring \mathcal{O} has cardinality $h(\mathcal{O})=\# \mathrm{Cl}(\mathcal{O})$.

- These can be seen as roots mod p of the Hilbert class polynomial $H_{D}(X)$.
- Summing over all belts we can decompose p as a sum of class numbers.

Lemma

$$
h\left(\mathcal{O}^{\prime}\right)=h(\mathcal{O})\left(\ell-\left(\frac{\operatorname{Disc}(\mathcal{O})}{\ell}\right)\right) \text { if }\left[\mathcal{O}^{\prime}: \mathcal{O}\right]=\ell
$$

CM action and Horizontal isogenies

Lemma

- If $\varphi: E \rightarrow E^{\prime}$ is a horizontal ℓ-isogeny, there exists an integral invertible \mathcal{O}-ideal \mathfrak{L} of norm ℓ such that $E^{\prime} \cong E / E[\mathfrak{L}]$.
- Reciprocally, invertible ideals \mathfrak{L} of norm ℓ give rise to ℓ-isogenies $\varphi: E \rightarrow E / E[\mathfrak{L}]$.
- This is the degree ℓ part of the free and transitive group action of $\mathrm{Cl}(\mathcal{O})$ on $\mathrm{Ell}_{\mathbb{F}_{p}}(\mathcal{O})$.
- Now we only need to look at ideals!

Structure: Horizontal isogenies

Corollary

There are exactly $1+\left(\frac{\operatorname{Disc}(\mathcal{O})}{\ell}\right)$ horizontal edges from a vertex with endomorphism ring \mathcal{O}.

- No horizontal isogenies outside of level 0 !
- The level 0 only connected components are called craters.
- Otherwise the number only depends on the cordillera:

$$
1+\left(\frac{D\left(\mathcal{O}_{K}\right)}{\ell}\right)= \begin{cases}0 & \text { if } \ell \text { is inert in } K, \\ 1 & \text { if } \ell \text { is ramified in } K, \\ 2 & \text { if } \ell \text { splits in } K,\end{cases}
$$

Structure: The crater

Structure: The crater

(1) ℓ is inert in K
(2) $\ell=\mathfrak{L}^{2}, \mathfrak{L}$ principal
(3) $\ell=\mathfrak{L} \overline{\mathfrak{L}}, \mathfrak{L}$ principal
(1) $\ell=\mathfrak{L}^{2}, \mathfrak{L}$ non principal
(5) $\ell=\mathfrak{L} \overline{\mathfrak{L}},[\mathfrak{L}]$ of order $n>1$ in $\mathrm{Cl}(\mathcal{O})$

All craters in a given belt are the same, as cosets of the CM action.

Figure: All possible craters.

Structure: The volcano

Structure: Degree of the vertices

Lemma

Let $j(E) \in \mathbb{F}_{p}$ be an ordinary j-invariant. Then the number of vertices from $j(E)$ in $\mathcal{G}_{\ell}\left(\mathbb{F}_{p}\right)$ is one of $0,1,2$ or $\ell+1$.

Proof

- $\hat{\varphi} \circ \varphi=[\ell] \Longrightarrow \operatorname{ker} \varphi \subset \operatorname{ker}[\ell]$
- $\ell+1$ size ℓ subgroups of $E[\ell] \cong(\mathbb{Z} / \ell \mathbb{Z})^{2}$
- Defined over $\mathbb{F}_{p} \Longrightarrow$ invariant under $\operatorname{Gal}\left(\mathbb{F}_{p}(E[\ell]) / \mathbb{F}_{p}\right)$
- Fixing $\geq 3 \mathbb{F}_{\ell}$-lines of $(\mathbb{Z} / \ell \mathbb{Z})^{2}$ fixes everything.

Structure: Volcanoes

Theorem (Kohel)

Connected components $\left(^{*}\right)$ of $\mathcal{G}_{\ell}\left(\mathbb{F}_{p}\right)$ are ℓ-volcanoes ${ }^{\text {a }}$: a cycle (crater) with isomorphic trees (lava flows) at each of its vertices. All vertices have arity $\ell+1$, except for the leaves of the trees.
${ }^{a}$ Terminology credit: Fouquet, Morain

Figure: A 2-volcano and two 3-volcanoes

A zoo of possible connected components

Question: Suppose we are given an abstract volcano V^{3}. Can we guarantee the existence of primes $p \neq \ell$ such that V is a connected component of $\mathcal{G}_{\ell}\left(\mathbb{F}_{p}\right)$?
${ }^{3}$ in the graph theoretic sense

A zoo of possible connected components

Question: Suppose we are given an abstract volcano V^{3}. Can we guarantee the existence of primes $p \neq \ell$ such that V is a connected component of $\mathcal{G}_{\ell}\left(\mathbb{F}_{p}\right)$?

Crater only: $\left(V_{0}, \ell, 0\right)$

[^1]
A zoo of possible connected components

Question: Suppose we are given an abstract volcano V^{3}. Can we guarantee the existence of primes $p \neq \ell$ such that V is a connected component of $\mathcal{G}_{\ell}\left(\mathbb{F}_{p}\right)$?

Crater only: $\left(V_{0}, \ell, 0\right) \quad$ Full volcano: $\left(V_{0}, \ell, d\right)$

[^2]
A zoo of possible connected components

Question: Suppose we are given an abstract volcano V^{3}. Can we guarantee the existence of primes $p \neq \ell$ such that V is a connected component of $\mathcal{G}_{\ell}\left(\mathbb{F}_{p}\right)$?

Crater only: $\left(V_{0}, \ell, 0\right) \quad$ Full v
${ }^{3}$ in the graph theoretic sense

A very useful trick: depth is not a problem

Lemma

If we can find an order \mathcal{O} of an imaginary quadratic field K with $\ell \nmid \operatorname{Disc}(\mathcal{O})<-4$, and a prime (integral ideal) \mathfrak{L} above the (rational) odd prime ℓ, such that \mathfrak{L} would generate a crater V_{0}, then for any $d \geq 0$, the volcano $\left(V_{0}, \ell, d\right)$ exists in infinitely many isogeny graphs $\mathcal{G}_{\ell}\left(\mathbb{F}_{p}\right)$.

- would generate can be well defined.
- If $\ell=2$ the result only holds for $d>0$.
- What this means: in practice, don't worry about p or d.

Depth is not a problem: sketch of proof

- We want $(t, f) \in \mathbb{N}^{2}$ and p such that

$$
4 p=t^{2}-f^{2} \operatorname{Disc}(\mathcal{O})
$$

$t \neq 0$ and $v_{\ell}(f)=d$. This ensures $\left(V_{0}, \ell, d\right) \subset \mathcal{G}_{\ell}\left(\mathbb{F}_{p}\right)$.

- $p=x^{2}+n y^{2}$ iff p splits completely in the ring class field of $\mathbb{Z}[\sqrt{-n}]$ (See Cox's eponymous book).
- Denote by H_{k} the ring class field of $\mathbb{Z}\left[\ell^{k} \sqrt{\operatorname{Disc}(\mathcal{O})}\right]$.

$$
\begin{cases}H_{d}: & p=x^{2}-\operatorname{Disc}(\mathcal{O}) \ell^{2 d} y^{2} \\ H_{d+1}: & p=x^{2}-\operatorname{Disc}(\mathcal{O}) \ell^{2(d+1)} y^{2}\end{cases}
$$

- By Chebotarëv's theorem, there are infinitely many primes that split completely in H_{d} but not in H_{d+1}.

Intermission: funny behaviour?

0

$$
\begin{aligned}
& \text { - } \\
& 0 \\
& \begin{array}{ll}
\text { ® } \\
\cdots & 0
\end{array}
\end{aligned}
$$

\bigcirc
O

$$
\mathrm{O}
$$

Solving the weak inverse problem

Objective

Find infinitely many $p \neq \ell$ such that craters of size n are connected components in $\mathcal{G}_{\ell}\left(\mathbb{F}_{p}\right)$.

- Huge freedom on the choice of ℓ.
- Clear out all small craters by hand.
- Yamamoto (1970): we can construct an explicit imaginary quadratic field K such that $\operatorname{Disc}\left(\mathcal{O}_{K}\right)<-4$ and that has an element of order $n \geq 3$ in its class group $\mathrm{Cl}\left(\mathcal{O}_{K}\right)$.
- Cox (again!): the Dirichlet density of primes in a given quadratic imaginary class is strictly positive.
- Conclude with our previous Lemma.

Solving the inverse problem: easy craters

Objective

ℓ is now fixed. Find infinitely many $p \neq \ell$ such that volcanoes of shape $\left(V_{0}, \ell, d\right)$ are connected components in $\mathcal{G}_{\ell}\left(\mathbb{F}_{p}\right)$.

- Using our Lemma: forget about p and d, all we need is an imaginary quadratic field K in which ℓ has good behaviour.

Solving the inverse problem: easy craters

Objective

ℓ is now fixed. Find infinitely many $p \neq \ell$ such that volcanoes of shape $\left(V_{0}, \ell, d\right)$ are connected components in $\mathcal{G}_{\ell}\left(\mathbb{F}_{p}\right)$.

- Using our Lemma: forget about p and d, all we need is an imaginary quadratic field K in which ℓ has good behaviour.

Infinitely many K such that ℓ is inert (Dirichlet).
\square
Figure: Crater type 1.

Solving the inverse problem: easy craters

Objective

ℓ is now fixed. Find infinitely many $p \neq \ell$ such that volcanoes of shape $\left(V_{0}, \ell, d\right)$ are connected components in $\mathcal{G}_{\ell}\left(\mathbb{F}_{p}\right)$.

- Using our Lemma: forget about p and d, all we need is an imaginary quadratic field K in which ℓ has good behaviour.
ℓ ramifies in a principal ideal of \mathcal{O}_{K} for $K=\mathbb{Q}(\sqrt{-\ell}) .(*)$ for $\ell \leq 3$.

Figure: Crater type 2.

Solving the inverse problem: easy craters

Objective

ℓ is now fixed. Find infinitely many $p \neq \ell$ such that volcanoes of shape $\left(V_{0}, \ell, d\right)$ are connected components in $\mathcal{G}_{\ell}\left(\mathbb{F}_{p}\right)$.

- Using our Lemma: forget about p and d, all we need is an imaginary quadratic field K in which ℓ has good behaviour.
$\ln K=\mathbb{Q}(\sqrt{1-4 \ell}), \alpha=\frac{1+\sqrt{1-4 \ell}}{2}$
is integral of norm ℓ, who must split in \mathcal{O}_{K} into two principal ideals.

Figure: Crater type 3.

Solving the inverse problem: easy craters

Objective

ℓ is now fixed. Find infinitely many $p \neq \ell$ such that volcanoes of shape $\left(V_{0}, \ell, d\right)$ are connected components in $\mathcal{G}_{\ell}\left(\mathbb{F}_{p}\right)$.

- Using our Lemma: forget about p and d, all we need is an imaginary quadratic field K in which ℓ has good behaviour.

Take $K=\mathbb{Q}(\sqrt{-\ell q})$ with a huge prime q. Then ℓ ramifies into a non-principal ideal, as its norm has to also be huge.

Figure: Crater type 4.

Solving the inverse problem: general craters

Objective

ℓ is now fixed. Find infinitely many $p \neq \ell$ such that volcanoes of shape $\left(V_{0}, \ell, d\right)$ are connected components in $\mathcal{G}_{\ell}\left(\mathbb{F}_{p}\right)$.

- Using our Lemma: forget about p and d, all we need is an imaginary quadratic field K in which ℓ has good behaviour.

Much harder! We want ℓ to split in two ideals whose class has prescribed order n in the ideal class group.

Figure: Crater type 5.

Solving the inverse problem: general craters

Theorem

The following properties hold.
(1) Let $n \neq 4$ be a positive integer and let $K=\mathbb{Q}\left(\sqrt{1-2^{n+2}}\right)$. Then in \mathcal{O}_{K} the prime 2 splits into two prime ideals whose corresponding classes in $\mathrm{Cl}\left(\mathcal{O}_{K}\right)$ have order n.
(2) Let $K=\mathbb{Q}(\sqrt{-39})$. Then in \mathcal{O}_{K} the prime 2 splits into two prime ideals whose corresponding classes in $\mathrm{Cl}\left(\mathcal{O}_{K}\right)$ have order 4.
(3) Let $\ell \in \mathbb{Z}$ be an odd prime and let $n \in \mathbb{Z}_{>0}$. Define $K_{1}:=\mathbb{Q}\left(\sqrt{1-\ell^{n}}\right)$ and $K_{2}:=\mathbb{Q}\left(\sqrt{1-4 \ell^{n}}\right)$. Then either in $\mathcal{O}_{K_{1}}$ or in $\mathcal{O}_{K_{2}}$ the prime ℓ splits into two prime ideals whose corresponding classes in $\mathrm{Cl}\left(\mathcal{O}_{K_{i}}\right)$ have order n.

Solving the inverse problem: sketch of proof

- We work directly with diophantine equations.
- We use results from Nagell, Mahler and Pell.
- For example if $\ell=2$, and $K=\mathbb{Q}\left(\sqrt{1-2^{n+2}}\right)$ we write $\sqrt{1-2^{n+2}}=x \sqrt{-A}$ with A squarefree:

$$
(\mathfrak{L} \overline{\mathfrak{L}})^{n}=2^{n}=\frac{A x^{2}+1}{4}=\frac{(1+x \sqrt{-A})}{2} \frac{(1-x \sqrt{-A})}{2}
$$

- Now $\operatorname{ord}_{\mathrm{CI}\left(\mathcal{O}_{K}\right)}(\mathfrak{L}) \mid n$. Suppose it is $q<n$.
- If $q=2$ expand and start cooking to get a contradiction except in one special case.
- If q is odd after clever manipulations we reach

$$
U^{2}-D V^{2}=-A
$$

whose solutions are given by a theorem of Mahler. With a little more work we get a contradiction.

Solving the inverse problem: sketch of proof

- The case where ℓ is an odd prime is fun.
- Similar manipulations combined with an idea from Nagell yield the following:
- $K_{1}=\mathbb{Q}\left(\sqrt{1-\ell^{n}}\right)$ works when $\frac{\ell^{n / 2} \pm 1}{2}$ is not a square.
- $K_{2}=\mathbb{Q}\left(\sqrt{1-4 \ell^{n}}\right)$ works when $\ell^{n / 2}$ is not the sum of two consecutive squares.
- Exercise: one condition has to be true!

Failing to solve the general inverse problem

Other fields

Almost everything we said on the structure of $\mathcal{G}_{\ell}\left(\mathbb{F}_{p}\right)$ transfers to $\mathcal{G}_{\ell}\left(\mathbb{F}_{p^{r}}\right)$ for $r>1$. Not true for the inverse problem!

Figure: The abstract volcano induced by (2-cycle, 2, 1).

Proposition

The above volcano is an impossibility in any $\mathcal{G}_{2}\left(\mathbb{F}_{p^{2}}\right)$.

Summary

In this talk:

- We defined the ordinary isogeny graph $\mathcal{G}_{\ell}\left(\mathbb{F}_{p}\right)$.
- We proved that its connected components look like volcanoes.
- We solved the inverse volcano problem over \mathbb{F}_{p} : every volcano exists in some $\mathcal{G}_{\ell}\left(\mathbb{F}_{p}\right)$.

Other directions:

- Inverse problem over $\mathbb{F}_{p^{r}}$.
- Given a volcano, which is the smallest field in which it lives?
- Better statistics on volcanoes.
- Faster algorithms to generate $\mathcal{G}_{\ell}\left(\mathbb{F}_{p}\right)$.
- A supersingular inverse problem?
- How many ℓ do you need to fully connect a cordillera?

Conclusion

Thank you! ${ }^{4}$

Figure: The $19 / 43 / 62$-cordilleras in $\mathcal{G}_{3}\left(\mathbb{F}_{1009}\right)$.
${ }^{4}$ If you want an illustration of any $\mathcal{G}_{\ell}\left(\mathbb{F}_{p}\right)$, feel free to send me an email!

References I

D.A. Cox.

Primes of the Form $x^{2}+n y^{2}$: Fermat, Class Field Theory, and Complex Multiplication.
John Wiley \& Sons, Inc., Hoboken, NJ, USA, April 1997.
目 M. Fouquet and F. Morain.
Isogeny volcanoes and the sea algorithm.
In C. Fieker and D.R. Kohel, editors, Algorithmic Number
Theory, pages 276-291, Berlin, Heidelberg, 2002. Springer
Berlin Heidelberg.
图 D. Kohel.
Endomorphism rings of elliptic curves over finite fields.
PhD thesis, University of California at Berkeley, 1996.

References II

R J. Miret, D. Sadornil, J. Tena, R. Tomàs, and M. Valls. Isogeny cordillera algorithm to obtain cryptographically good elliptic curves.
In ACSW, 2007.
嗇 T. Nagell.
Contributions to the theory of a category of Diophantine equations of the second degree with two unknowns.
Nova Acta Soc. Sci. Upsaliensis (4), 16(2):38, 1955.
E Y. Yamamoto.
On unramified Galois extensions of quadratic number fields. Osaka Math. J., 7:57-76, 1970.

Illustration credits

- Volcanoes and Isogeny graphs are generated by myself using SageMath-Pari/GP-C++ and tikzit.
- The rest of the illustrations are stock pictures from Vilhelm Gunnarsson/Getty Images, Andy Krakovski/Istock and Reddit.

[^0]: ${ }^{1}$ Leibniz Universität Hannover
 ${ }^{2}$ Københavns Universitet

[^1]: ${ }^{3}$ in the graph theoretic sense

[^2]: ${ }^{3}$ in the graph theoretic sense

