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What is an isogeny graph?

Isogeny graphs: (brief) history and applications

Original work
@ David Kohel's PhD thesis (1996)

A computational tool

@ Computing endomorphism rings
e Computing modular/Hilbert class polynomials

@ Point counting

In cryptography

e First proposal by Couveignes (1997)
@ Post-Quantum attempts: SIDH, CSIDH, etc
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What is an isogeny graph?

Defining vertices: j-invariants

J-invariants

Let E/F, : y? = x3 + ax + b be an elliptic curve, the j-invariant of
Eis 3
4a
i(E) =j(a,b) =1728————.
J( ) J(a7 ) 4a3+27b2

@ p possible j-invariants, all are reached.

2

o Encompass classes of F,-isomorphisms (x,y) — (u?x, u3y).

e j=0and = 1728 (in Fp) are special.
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What is an isogeny graph?

Defining edges: isogenies

Isogenies

An isogeny is a non-constant homomorphism ¢ : E — E’.
It is surjective and has finite kernel C = ker .
The degree of ¢ is degp = #C.

@ An isogeny ¢ is defined over I, if ker ¢ is stable by Galois
action.
o In this talk, isogenies are equivalent up to their kernel.

@ Small degree isogenies are easy to compute.
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What is an isogeny graph?

Ordinary vs supersingular

Endomorphism ring

Let E/F, be an elliptic curve, and k a field. Then the
endomorphism ring Endg(E) is the ring of all k-rational isogenies
from E to itself.

@ When Ende(E) is an order in an imaginary quadratic field, E
and j(E) are called ordinary .

@ The rest is supersingular.
o Over Fj,, we have O(,/p) supersingular j-invariants.

o Every Fp—isogeny between ordinary curves with j # 0,1728
has an equivalent FF,-isogeny .
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What is an isogeny graph?

Quick reminder: imaginary quadratic orders

Orders are subrings of the ring of integers.

Maximal order
In K =Q(v/-D),
Ok =Z[v—D]or Z [Hm]

Quadratic orders
Orders in K = Q(v/—D) are of

the form O = Z + fOk with
f € Z~o (think lattices).

@ We have a correspondence
between negative integers
= 0,1 mod 4 and orders.

o f =[O0k : O] is called the
conductor of O.

e Disc(O) = f2 Disc(Ok).
e We define CI(O) as usual.

@ Class number notation:

h(O) = #CI(0).
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What is an isogeny graph?

So what is the isogeny graph??

@ p > 3is a large prime.

@ ( # pis a small prime.

Isogeny graph

The ordinary (-isogeny graph Gy(F,) has set of vertices all ordinary
j-invariants in I, and edges all IF,-rational {-isogenies.

@ Up to isomorphism of curves, up to equivalence of isogeny.
@ Gy(Fp) can be seen as undirected outside of j = 0,1728.

@ Possible self-loops, double edges and double self-loops.

@ Roots of ®,(X, Y) with multiplicity.
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Pictures!

What is an isogeny graph?
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Exploring the volcanoes

Structure: Frobenius, trace and cordilleras




Exploring the volcanoes

Structure: Frobenius, trace and cordilleras

The Frobenius equation

Let 7 be the Frobenius endomorphism associated to E/F, where
J(E) #0,1728 and K = End(E) ®z Q. Then

4p — t? = —f? Disc(Ok)
where t = Tr(7) and f = [Ok : Z[r]].

e j(E) # 0,1728 means Disc(K) < —4 and # Aut(E) = 2: the
equation in red has at most one solution (t, f) € N2,

o Infact t = p+1—#E: we have [t| < [2,/p].

@ Isogenies preserve #E.

@ Same Frobenius <= same End(E) ®z Q <= same trace
up to sign <= isogenous up to equivalence.
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Exploring the volcanoes

Structure: Frobenius, trace and cordilleras

Cordillera

The t-cordillera® of Gy(Fp) is the subgraph induced by the
following set of vertices:

Ve ={J(E): E/Fp and p+1—#E(Fp) = *t}.

“Terminology credit: Miret, Sadornil, Tena, Tomas and Valls (2007)

e 1 positive t <= 1 imaginary quadratic field (*).
o All O = Endg,(E) for E/F, such that j(E) € V; satisfy

Z[ﬂ't] g O g OK.

o All ordinary traces live in [1,[2,/p]].
@ There can be no edges between cordilleras (*).
@ Over F,, no cordillera is empty (Waterhouse 1969).

13/43



Exploring the volcanoes

Structure: Horizontal vs Vertical isogenies

Lemma

Let o : E; — Ep be an {-isogeny. Then

1
[01: 0, = Z’l’ or f.

@ ¢ increases O: vertical ascending.
@ ¢ decreases O: vertical descending.
@ ¢ leaves O unchanged: horizontal.

Zr) CZ+ ml?Ok CZ+ml 0k C ... CZ+ mOk C Ok
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Exploring the volcanoes

Structure: Volcano Belts

Belts

We partition cordilleras into belts:
subgraphs in which all orders have
conductors of the form m¢¥, where m is
coprime to /.

Zir] CZ+ ml?Ok CZ+ ml? Ok C ... CZ+ mOx C Ok
In a given cordillera,

{belts} «— {divisors of the conductor of Z[r]| coprime to ¢}
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Exploring the volcanoes

Structure: Levels and ascending isogenies

Levels

A vertex of G,(F,) with order Z + m¢*Ok lies at level k if
(¢,m) =1. If Z[r] = Z + fOk then d = vy(f) is called the depth.

An {-cordillera and its belts have a unique depth (*).

Lemma

Let E/F, with End(E) = Z + vOk, where l|v. Then there exists a
vertical ascending (-isogeny from j(E).
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Exploring the volcanoes

Structure: How many curves at a given level?

Lemma

Let O be an order of discriminant D in K = Q(\/t? — 4p) where
It| € [1,|2\/p]]. If Z[r] C O Then the set Ellg,(O) of j-invariants
with endomorphism ring O has cardinality h(O) = # CI(O).

@ These can be seen as roots mod p of the Hilbert class
polynomial Hp(X).

@ Summing over all belts we can decompose p as a sum of class
numbers.

h(O') = h(O) (z - (Disz(o)» iflO": O] = ¢
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Exploring the volcanoes

CM action and Horizontal isogenies

Lemma

e If o : E — E' is a horizontal ¢-isogeny, there exists an integral
invertible O-ideal £ of norm ¢ such that E' = E/E[£].

@ Reciprocally, invertible ideals £ of norm £ give rise to
(-isogenies ¢ : E — E/E[£].

@ This is the degree ¢ part of the free and transitive group
action of CI(O) on Ellg,(O).

@ Now we only need to look at ideals!
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Exploring the volcanoes

Structure: Horizontal isogenies

Corollary

There are exactly 1 + <D'%(O)) horizontal edges from a vertex

with endomorphism ring O.

@ No horizontal isogenies outside of level 0!
@ The level 0 only connected components are called craters.

@ Otherwise the number only depends on the cordillera:

0 if £isinertin K
D 9
1+ < (OK)> —{ 1 if¢is ramified in K,
2 if £ splits in K,
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Exploring the volcanoes

Structure: The crater




Exploring the volcanoes

Structure: The crater

Q lisinertin K

@ (= £?, £ principal

@ (= £g, £ principal

Q@ (= £2 £ non principal

Q (= £L, [£] of order n > 1 in CI(O)

All craters in a given belt are the same, as cosets of the CM action.

98[O DT

Figure: All possible craters.
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Exploring the volcanoes

Structure: The volcano




Exploring the volcanoes

Structure: Degree of the vertices

Let j(E) € F,, be an ordinary j-invariant. Then the number of
vertices from j(E) in G;(Fp) is one of 0,1,2 or { + 1.

@ pop=1[l = kerp C ker[{]

o / + 1 size ¢ subgroups of E[{] = (Z/(Z)?

@ Defined over F, = invariant under Gal(F,(E[(])/Fp)
o Fixing > 3 Fy-lines of (Z/¢Z)? fixes everything.
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Exploring the volcanoes

Structure: Volcanoes

Theorem (Kohel)

Connected components (*) of G;(F,,) are (-volcanoes ?: a cycle
(crater) with isomorphic trees (lava flows) at each of its vertices.
All vertices have arity ¢ + 1, except for the leaves of the trees.

“Terminology credit: Fouquet, Morain

Iy et

Figure: A 2-volcano and two 3-volcanoes
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Solving the inverse problem

A zoo of possible connected components

Question: Suppose we are given an abstract volcano V3. Can we
guarantee the existence of primes p # £ such that V is a
connected component of Gy(Fp)?

3in the graph theoretic sense
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Solving the inverse problem

A zoo of possible connected components

Question: Suppose we are given an abstract volcano V3. Can we
guarantee the existence of primes p # £ such that V is a
connected component of Gy(Fp)?

Crater only: (V,¢,0)

3in the graph theoretic sense
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Solving the inverse problem

A zoo of possible connected components

Question: Suppose we are given an abstract volcano V3. Can we
guarantee the existence of primes p # £ such that V is a
connected component of Gy(Fp)?

) ‘\x.\/"»\(‘,,

Crater only: (Vo,4,0)  Full volcano: (Vo,#,d)

3in the graph theoretic sense
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Solving the inverse problem

A zoo of possible connected components

Question: Suppose we are given an abstract volcano V3. Can we
guarantee the existence of primes p # £ such that V is a
connected component of Gy(Fp)?

4 = ‘..'_'\- ;
25 = T ) A

-3 — P 2

' w
v R
' €

3 "\x'\/'_,\y/ed' 3)1‘

Crater only: (Vo,¢,0)  Full volcano: (Vo,¢,d) Replace F, with Fpr

3in the graph theoretic sense
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Solving the inverse problem

A very useful trick: depth is not a problem

Lemma

If we can find an order O of an imaginary quadratic field K with
¢t Disc(O) < —4, and a prime (integral ideal) £ above the
(rational) odd prime ¢, such that £ would generate a crater Vj,
then for any d > 0, the volcano (Vg (, d) exists in infinitely many
isogeny graphs Gy(Fp).

@ would generate can be well defined.
o If £ = 2 the result only holds for d > 0.

@ What this means: in practice, don't worry about p or d.
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Solving the inverse problem

Depth is not a problem: sketch of proof

o We want (t,f) € N? and p such that
4p = t* — 2 Disc(0),

t # 0 and v(f) = d . This ensures (Vo,¢,d) C Go(Fp).

o p = x°+ ny? iff p splits completely in the ring class field of
Z[v/—n] (See Cox's eponymous book).

o Denote by Hy the ring class field of Z[¢*+/Disc(O)].

Hy:  p=x%— Disc(0)#?9y?
Hyi1: p = x?— Disc(O)¢2(d+1)y2

@ By Chebotarév's theorem, there are infinitely many primes
that split completely in Hy but not in Hyy1.
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Intermission: funny behaviour?

o

Solving the inverse problem

o UL o

o
Ol
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Solving the inverse problem

Solving the weak inverse problem

Find infinitely many p # ¢ such that craters of size n are connected
components in Gy(Fp).

@ Huge freedom on the choice of /.
@ Clear out all small craters by hand.

@ Yamamoto (1970): we can construct an explicit imaginary
quadratic field K such that Disc(Ok) < —4 and that has an
element of order n > 3 in its class group Cl(Ok).

@ Cox (again!): the Dirichlet density of primes in a given
quadratic imaginary class is strictly positive.

@ Conclude with our previous Lemma.
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Solving the inverse problem

Solving the inverse problem: easy craters

£ is now fixed. Find infinitely many p # £ such that volcanoes of
shape (Vp, ¢, d) are connected components in Gy(Fp).

@ Using our Lemma: forget about p and d , all we need is an
imaginary quadratic field K in which £ has good behaviour.
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Solving the inverse problem

Solving the inverse problem: easy craters

£ is now fixed. Find infinitely many p # £ such that volcanoes of
shape (Vp, ¢, d) are connected components in Gy(Fp).

@ Using our Lemma: forget about p and d , all we need is an
imaginary quadratic field K in which £ has good behaviour.

Infinitely many K such that £ is e

inert (Dirichlet).
( ) Figure: Crater type 1.
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Solving the inverse problem

Solving the inverse problem: easy craters

£ is now fixed. Find infinitely many p # £ such that volcanoes of
shape (Vp, 4, d) are connected components in Gy(Fp).

@ Using our Lemma: forget about p and d , all we need is an
imaginary quadratic field K in which £ has good behaviour.

£ ramifies in a principal ideal of Ok Q

for K =Q(v—¢). (*) for £ < 3.
Figure: Crater type 2.
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Solving the inverse problem

Solving the inverse problem: easy craters

£ is now fixed. Find infinitely many p # £ such that volcanoes of
shape (Vp, 4, d) are connected components in Gy(Fp).

@ Using our Lemma: forget about p and d , all we need is an
imaginary quadratic field K in which £ has good behaviour.

In K = Q(v1—4l), a = 1v1=% 8
is integral of norm ¢, who must split
in Ok into two principal ideals. Figure: Crater type 3.

32/43



Solving the inverse problem

Solving the inverse problem: easy craters

£ is now fixed. Find infinitely many p # £ such that volcanoes of
shape (Vp, 4, d) are connected components in Gy(Fp).

@ Using our Lemma: forget about p and d , all we need is an
imaginary quadratic field K in which £ has good behaviour.

prime g. Then /£ ramifies into a
non-principal ideal, as its norm has
to also be huge.

Take K = Q(v/—/q) with a huge I

Figure: Crater type 4.
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Solving the inverse problem

Solving the inverse problem: general craters

£ is now fixed. Find infinitely many p # £ such that volcanoes of
shape (Vp, 4, d) are connected components in Gy(Fp).

@ Using our Lemma: forget about p and d , all we need is an
imaginary quadratic field K in which £ has good behaviour.

Much harder! We want ¢ to split in .

two ideals whose class has I::\ y
prescribed order n in the ideal class -

group. Figure: Crater type 5.
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Solving the inverse problem

Solving the inverse problem: general craters

The following properties hold.

Q Let n# 4 be a positive integer and let K = Q(\/1 — 2712).
Then in Ok the prime 2 splits into two prime ideals whose
corresponding classes in C1(Ok) have order n.

@ Let K =Q(+/—39). Then in Ok the prime 2 splits into two
prime ideals whose corresponding classes in Cl(Ok) have
order 4.

© Let ¢ € 7Z be an odd prime and let n € Z~q. Define
K1 :=Q(v/1—¢") and Ky := Q(\/1 — 4¢"). Then either in
Ok, or in Ok, the prime { splits into two prime ideals whose
corresponding classes in C1(Oy;) have order n.
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Solving the inverse problem

Solving the inverse problem: sketch of proof

We work directly with diophantine equations.

We use results from Nagell, Mahler and Pell.

For example if £ =2, and K = Q(v/1 — 2"t2) we write
V1 —2rt2 = x/—A with A squarefree:

_ACHL (L xvV=A) (1 - xV/-A)

a\n — 217
(££) 4 2 2

@ Now ordcjo,)(£)[n. Suppose it is g < n.
o If g =2 expand and start cooking to get a contradiction

except in one special case.
If g is odd after clever manipulations we reach

U? — DV? = —A,

whose solutions are given by a theorem of Mahler. With a

little more work we get a contradiction.
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Solving the inverse problem

Solving the inverse problem: sketch of proof

The case where /¢ is an odd prime is fun.

Similar manipulations combined with an idea from Nagell yield
the following:

K1 = Q(v/1 — ¢") works when W% is not a square.

K> = Q(v/1 — 407) works when £"/? is not the sum of two
consecutive squares.

Exercise: one condition has to be true!
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Solving the inverse problem

Failing to solve the general inverse problem

Other fields

Almost everything we said on the structure of Gy(Fp) transfers to
Gi(Fpr) for r > 1. Not true for the inverse problem!

'
o—u—o

Figure: The abstract volcano induced by (2-cycle, 2,1).

The above volcano is an impossibility in any Go(F2).
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Solving the inverse problem

Summary

In this talk:

o We defined the ordinary
isogeny graph G,(Fp).

@ We proved that its
connected components look
like volcanoes.

@ We solved the inverse

volcano problem over IF:
every volcano exists in some

Go(Fp).

Other directions:

Inverse problem over Fr.

Given a volcano, which is
the smallest field in which it
lives?

Better statistics on
volcanoes.

Faster algorithms to
generate G,(F,).

A supersingular inverse
problem?

How many ¢ do you need to
fully connect a cordillera?
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Solving the inverse problem

Conclusion

Thank you!*

62 o

Figure: The 19/43/62-cordilleras in G3(F1009)-

*If you want an illustration of any G(F,), feel free to send me an email!
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Solving the inverse problem
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Solving the inverse problem
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Solving the inverse problem

[llustration credits

@ Volcanoes and Isogeny graphs are generated by myself using
SageMath-Pari/GP-C++ and tikzit.

@ The rest of the illustrations are stock pictures from Vilhelm
Gunnarsson/Getty Images, Andy Krakovski/lIstock and Reddit.
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