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Outline of the talk

Introduction to isogeny graphs in the easiest setting

The connected components: Volcano exploration

Solving the inverse problem
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Isogeny graphs: (brief) history and applications

Original work

David Kohel’s PhD thesis (1996)

A computational tool

Computing endomorphism rings

Computing modular/Hilbert class polynomials

Point counting

In cryptography

First proposal by Couveignes (1997)

Post-Quantum attempts: SIDH, CSIDH, etc
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Defining vertices: j-invariants

j-invariants

Let E/Fp : y2 = x3 + ax + b be an elliptic curve, the j-invariant of
E is

j(E ) = j(a, b) = 1728
4a3

4a3 + 27b2
.

p possible j-invariants, all are reached.

Encompass classes of Fp-isomorphisms (x , y) 7→ (u2x , u3y).

j = 0 and j = 1728 (in Fp) are special.
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Defining edges: isogenies

Isogenies

An isogeny is a non-constant homomorphism φ : E → E ′.
It is surjective and has finite kernel C = kerφ.
The degree of φ is degφ = #C .

An isogeny φ is defined over Fp if kerφ is stable by Galois
action.

In this talk, isogenies are equivalent up to their kernel.

Small degree isogenies are easy to compute.
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Ordinary vs supersingular

Endomorphism ring

Let E/Fp be an elliptic curve, and k a field. Then the
endomorphism ring Endk(E ) is the ring of all k-rational isogenies
from E to itself.

When EndFp
(E ) is an order in an imaginary quadratic field, E

and j(E ) are called ordinary .

The rest is supersingular.

Over Fp, we have O(
√
p) supersingular j-invariants.

Every Fp-isogeny between ordinary curves with j ̸= 0, 1728
has an equivalent Fp-isogeny .
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Quick reminder: imaginary quadratic orders

Orders are subrings of the ring of integers.

Maximal order

In K = Q(
√
−D),

OK = Z[
√
−D] or Z

[
1+

√
−D

2

]
.

Quadratic orders

Orders in K = Q(
√
−D) are of

the form O = Z+ fOK with
f ∈ Z>0 (think lattices).

We have a correspondence
between negative integers
≡ 0, 1 mod 4 and orders.

f = [OK : O] is called the
conductor of O.
Disc(O) = f 2Disc(OK ).

We define Cl(O) as usual.
Class number notation:
h(O) = #Cl(O).
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So what is the isogeny graph??

p > 3 is a large prime.

ℓ ̸= p is a small prime.

Isogeny graph

The ordinary ℓ-isogeny graph Gℓ(Fp) has set of vertices all ordinary
j-invariants in Fp and edges all Fp-rational ℓ-isogenies.

Up to isomorphism of curves, up to equivalence of isogeny.

Gℓ(Fp) can be seen as undirected outside of j = 0, 1728.

Possible self-loops, double edges and double self-loops.

Roots of Φℓ(X ,Y ) with multiplicity.
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Pictures!
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Structure: Frobenius, trace and cordilleras
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Structure: Frobenius, trace and cordilleras

The Frobenius equation

Let π be the Frobenius endomorphism associated to E/Fp where
j(E ) ̸= 0, 1728 and K = End(E )⊗Z Q. Then

4p − t2 = −f 2Disc(OK )

where t = Tr(π) and f = [OK : Z[π]].

j(E ) ̸= 0, 1728 means Disc(K ) < −4 and #Aut(E ) = 2: the
equation in red has at most one solution (t, f ) ∈ N2.

In fact t = p + 1−#E : we have |t| ≤ ⌊2√p⌋.
Isogenies preserve #E .

Same Frobenius ⇐⇒ same End(E )⊗Z Q ⇐⇒ same trace
up to sign ⇐⇒ isogenous up to equivalence.
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Structure: Frobenius, trace and cordilleras

Cordillera

The t-cordilleraa of Gℓ(Fp) is the subgraph induced by the
following set of vertices:

Vt = {j(E ) : E/Fp and p + 1−#E (Fp) = ±t}.
aTerminology credit: Miret, Sadornil, Tena, Tomàs and Valls (2007)

1 positive t ⇐⇒ 1 imaginary quadratic field (*).
All O = EndFp(E ) for E/Fp such that j(E ) ∈ Vt satisfy

Z[πt ] ⊆ O ⊆ OK .

All ordinary traces live in J1, ⌊2√p⌋K.
There can be no edges between cordilleras (*).
Over Fp, no cordillera is empty (Waterhouse 1969).
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Structure: Horizontal vs Vertical isogenies

Lemma

Let φ : E1 → E2 be an ℓ-isogeny. Then

[O1 : O2] =
1

ℓ
, 1, or ℓ.

φ increases O: vertical ascending.
φ decreases O: vertical descending.
φ leaves O unchanged: horizontal.

Z[π] ⊆ Z+mℓdOK ⊂ Z+mℓd−1OK ⊂ . . . ⊂ Z+mOK ⊆ OK
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Structure: Volcano Belts

Belts

We partition cordilleras into belts:
subgraphs in which all orders have
conductors of the form mℓk , where m is
coprime to ℓ.

Z[π] ⊆ Z+mℓdOK ⊂ Z+mℓd−1OK ⊂ . . . ⊂ Z+mOK ⊆ OK

In a given cordillera,

{belts} ←→ {divisors of the conductor of Z[π] coprime to ℓ}
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Structure: Levels and ascending isogenies

Levels

A vertex of Gℓ(Fp) with order Z+mℓkOK lies at level k if
(ℓ,m) = 1. If Z[π] = Z+ fOK then d = vℓ(f ) is called the depth.

An ℓ-cordillera and its belts have a unique depth (*).

Lemma

Let E/Fp with End(E ) = Z+ vOK , where ℓ|v. Then there exists a
vertical ascending ℓ-isogeny from j(E ).
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Structure: How many curves at a given level?

Lemma

Let O be an order of discriminant D in K = Q(
√

t2 − 4p) where
|t| ∈ J1, ⌊2√p⌋K. If Z[π] ⊂ O Then the set EllFp(O) of j-invariants
with endomorphism ring O has cardinality h(O) = #Cl(O).

These can be seen as roots mod p of the Hilbert class
polynomial HD(X ).

Summing over all belts we can decompose p as a sum of class
numbers.

Lemma

h(O′) = h(O)
(
ℓ−

(
Disc(O)

ℓ

))
if [O′ : O] = ℓ

.
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CM action and Horizontal isogenies

Lemma

If φ : E → E ′ is a horizontal ℓ-isogeny, there exists an integral
invertible O-ideal L of norm ℓ such that E ′ ∼= E/E [L].

Reciprocally, invertible ideals L of norm ℓ give rise to
ℓ-isogenies φ : E → E/E [L].

This is the degree ℓ part of the free and transitive group
action of Cl(O) on EllFp(O).
Now we only need to look at ideals!
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Structure: Horizontal isogenies

Corollary

There are exactly 1 +
(
Disc(O)

ℓ

)
horizontal edges from a vertex

with endomorphism ring O.

No horizontal isogenies outside of level 0!

The level 0 only connected components are called craters.

Otherwise the number only depends on the cordillera:

1 +

(
D(OK )

ℓ

)
=


0 if ℓ is inert in K ,
1 if ℓ is ramified in K ,
2 if ℓ splits in K ,

19 / 43



What is an isogeny graph?
Exploring the volcanoes

Solving the inverse problem

Structure: The crater
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Structure: The crater

1 ℓ is inert in K

2 ℓ = L2, L principal

3 ℓ = LL, L principal

4 ℓ = L2, L non principal

5 ℓ = LL, [L] of order n > 1 in Cl(O)

All craters in a given belt are the same, as cosets of the CM action.

Figure: All possible craters.
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Structure: Degree of the vertices

Lemma

Let j(E ) ∈ Fp be an ordinary j-invariant. Then the number of
vertices from j(E ) in Gℓ(Fp) is one of 0, 1, 2 or ℓ+ 1.

Proof

φ̂ ◦ φ = [ℓ] =⇒ kerφ ⊂ ker[ℓ]

ℓ+ 1 size ℓ subgroups of E [ℓ] ∼= (Z/ℓZ)2

Defined over Fp =⇒ invariant under Gal(Fp(E [ℓ])/Fp)

Fixing ≥ 3 Fℓ-lines of (Z/ℓZ)2 fixes everything.
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Structure: Volcanoes

Theorem (Kohel)

Connected components (*) of Gℓ(Fp) are ℓ-volcanoes a: a cycle
(crater) with isomorphic trees (lava flows) at each of its vertices.
All vertices have arity ℓ+ 1, except for the leaves of the trees.

aTerminology credit: Fouquet, Morain

Figure: A 2-volcano and two 3-volcanoes
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A zoo of possible connected components

Question: Suppose we are given an abstract volcano V 3. Can we
guarantee the existence of primes p ̸= ℓ such that V is a

connected component of Gℓ(Fp)?

Crater only: (V0, ℓ, 0) Full volcano: (V0, ℓ, d) Replace Fp with Fpr

3in the graph theoretic sense
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A very useful trick: depth is not a problem

Lemma

If we can find an order O of an imaginary quadratic field K with
ℓ ∤ Disc(O) < −4, and a prime (integral ideal) L above the
(rational) odd prime ℓ, such that L would generate a crater V0,
then for any d ≥ 0, the volcano (V0, ℓ, d) exists in infinitely many
isogeny graphs Gℓ(Fp).

would generate can be well defined.

If ℓ = 2 the result only holds for d > 0.

What this means: in practice, don’t worry about p or d .
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Depth is not a problem: sketch of proof

We want (t, f ) ∈ N2 and p such that

4p = t2 − f 2Disc(O),

t ̸= 0 and vℓ(f ) = d . This ensures (V0, ℓ, d) ⊂ Gℓ(Fp).

p = x2 + ny2 iff p splits completely in the ring class field of
Z[
√
−n] (See Cox’s eponymous book).

Denote by Hk the ring class field of Z[ℓk
√

Disc(O)].{
Hd : p = x2 − Disc(O)ℓ2dy2
Hd+1 : p = x2 − Disc(O)ℓ2(d+1)y2

By Chebotarëv’s theorem, there are infinitely many primes
that split completely in Hd but not in Hd+1.
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Intermission: funny behaviour?

28 / 43



What is an isogeny graph?
Exploring the volcanoes

Solving the inverse problem

Solving the weak inverse problem

Objective

Find infinitely many p ̸= ℓ such that craters of size n are connected
components in Gℓ(Fp).

Huge freedom on the choice of ℓ.

Clear out all small craters by hand.

Yamamoto (1970): we can construct an explicit imaginary
quadratic field K such that Disc(OK ) < −4 and that has an
element of order n ≥ 3 in its class group Cl(OK ).

Cox (again!): the Dirichlet density of primes in a given
quadratic imaginary class is strictly positive.

Conclude with our previous Lemma.
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Solving the inverse problem: easy craters

Objective

ℓ is now fixed. Find infinitely many p ̸= ℓ such that volcanoes of
shape (V0, ℓ, d) are connected components in Gℓ(Fp).

Using our Lemma: forget about p and d , all we need is an
imaginary quadratic field K in which ℓ has good behaviour.

Infinitely many K such that ℓ is
inert (Dirichlet).

Figure: Crater type 1.
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Solving the inverse problem: easy craters

Objective

ℓ is now fixed. Find infinitely many p ̸= ℓ such that volcanoes of
shape (V0, ℓ, d) are connected components in Gℓ(Fp).

Using our Lemma: forget about p and d , all we need is an
imaginary quadratic field K in which ℓ has good behaviour.

ℓ ramifies in a principal ideal of OK

for K = Q(
√
−ℓ). (*) for ℓ ≤ 3.

Figure: Crater type 2.

31 / 43



What is an isogeny graph?
Exploring the volcanoes

Solving the inverse problem

Solving the inverse problem: easy craters

Objective

ℓ is now fixed. Find infinitely many p ̸= ℓ such that volcanoes of
shape (V0, ℓ, d) are connected components in Gℓ(Fp).

Using our Lemma: forget about p and d , all we need is an
imaginary quadratic field K in which ℓ has good behaviour.

In K = Q(
√
1− 4ℓ), α = 1+

√
1−4ℓ
2

is integral of norm ℓ, who must split
in OK into two principal ideals. Figure: Crater type 3.
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Solving the inverse problem: easy craters

Objective

ℓ is now fixed. Find infinitely many p ̸= ℓ such that volcanoes of
shape (V0, ℓ, d) are connected components in Gℓ(Fp).

Using our Lemma: forget about p and d , all we need is an
imaginary quadratic field K in which ℓ has good behaviour.

Take K = Q(
√
−ℓq) with a huge

prime q. Then ℓ ramifies into a
non-principal ideal, as its norm has
to also be huge. Figure: Crater type 4.
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Solving the inverse problem: general craters

Objective

ℓ is now fixed. Find infinitely many p ̸= ℓ such that volcanoes of
shape (V0, ℓ, d) are connected components in Gℓ(Fp).

Using our Lemma: forget about p and d , all we need is an
imaginary quadratic field K in which ℓ has good behaviour.

Much harder! We want ℓ to split in
two ideals whose class has
prescribed order n in the ideal class
group. Figure: Crater type 5.
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Solving the inverse problem: general craters

Theorem

The following properties hold.

1 Let n ̸= 4 be a positive integer and let K = Q(
√
1− 2n+2).

Then in OK the prime 2 splits into two prime ideals whose
corresponding classes in Cl(OK ) have order n.

2 Let K = Q(
√
−39). Then in OK the prime 2 splits into two

prime ideals whose corresponding classes in Cl(OK ) have
order 4.

3 Let ℓ ∈ Z be an odd prime and let n ∈ Z>0. Define
K1 := Q(

√
1− ℓn) and K2 := Q(

√
1− 4ℓn). Then either in

OK1 or in OK2 the prime ℓ splits into two prime ideals whose
corresponding classes in Cl(OKi

) have order n.
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Solving the inverse problem: sketch of proof

We work directly with diophantine equations.

We use results from Nagell, Mahler and Pell.

For example if ℓ = 2, and K = Q(
√
1− 2n+2) we write√

1− 2n+2 = x
√
−A with A squarefree:

(LL)n = 2n =
Ax2 + 1

4
=

(1 + x
√
−A)

2

(1− x
√
−A)

2

Now ordCl(OK )(L)|n. Suppose it is q < n.

If q = 2 expand and start cooking to get a contradiction
except in one special case.

If q is odd after clever manipulations we reach

U2 − DV 2 = −A,

whose solutions are given by a theorem of Mahler. With a
little more work we get a contradiction.
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Solving the inverse problem: sketch of proof

The case where ℓ is an odd prime is fun.

Similar manipulations combined with an idea from Nagell yield
the following:

K1 = Q(
√
1− ℓn) works when ℓn/2±1

2 is not a square.

K2 = Q(
√
1− 4ℓn) works when ℓn/2 is not the sum of two

consecutive squares.

Exercise: one condition has to be true!
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Failing to solve the general inverse problem

Other fields

Almost everything we said on the structure of Gℓ(Fp) transfers to
Gℓ(Fpr ) for r > 1. Not true for the inverse problem!

Figure: The abstract volcano induced by (2-cycle, 2, 1).

Proposition

The above volcano is an impossibility in any G2(Fp2).
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Summary

In this talk:

We defined the ordinary
isogeny graph Gℓ(Fp).

We proved that its
connected components look
like volcanoes.

We solved the inverse
volcano problem over Fp:
every volcano exists in some
Gℓ(Fp).

Other directions:

Inverse problem over Fpr .

Given a volcano, which is
the smallest field in which it
lives?

Better statistics on
volcanoes.

Faster algorithms to
generate Gℓ(Fp).

A supersingular inverse
problem?

How many ℓ do you need to
fully connect a cordillera?
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Conclusion

Thank you!4

19 43 1 3 62

Figure: The 19/43/62-cordilleras in G3(F1009).

4If you want an illustration of any Gℓ(Fp), feel free to send me an email!
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Illustration credits

Volcanoes and Isogeny graphs are generated by myself using
SageMath-Pari/GP-C++ and tikzit.

The rest of the illustrations are stock pictures from Vilhelm
Gunnarsson/Getty Images, Andy Krakovski/Istock and Reddit.
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