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Motivation: Multimodal Benchmark Functions for
Evolutionary Algorithms
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Framework of study

Pseudo-Boolean optimization: f : {0, 1}n → R, find (one of) its
global maximum.

A wide class of algorithms: Evolutionary Algorithms.
Algorithms that rely on notions of mutation and selection for
optimization purposes.

{0, 1}n is the searchspace;
x is an individual;
f is the fitness function.
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Benchmark functions

It is standard to focus on a few representative functions to gauge strengths
and weaknesses. Famous ones:

OneMax

LeadingOnes

Jumpk

etc.

The choice and design of benchmark functions is a cornerstone of theory
of EAs.
What should be expected from a good benchmark function? A very good
debate to have!
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Unimodalness and multimodalness

A pseudo-Boolean function is said to be unimodal if it has at most one
local maximum, multimodal otherwise.

Unimodal functions are quite rare among all p-B functions; likewise,
in real-life, optimization problems without local optima are not very
common.

Crucial need to study and understand how Randomized Search
Heuristics deal with local optima.
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Multimodal benchmark functions?

Yet, the vast majority of benchmark functions are unimodal.

OneMax

LeadingOnes

etc.

The only standard widely used multimodal benchmark functions are the
Jumpk functions.
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Examples

OneMax(x) = ‖x‖1 Jumpk(x) =
{
‖x‖1 if ‖x‖1 ∈ [0..n − k] ∪ {n},
−‖x‖1 otherwise,

Unimodal Multimodal
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The Jumpk Functions

A layer of local optima, at Hamming distance k from the global
optimum.

Fair evaluation of the ability of an algorithm to leave a local optimum.

One flaw: when stuck, the only way to leave local optima is a perfect
jump. This is quite a specific feature!

H.Bambury, A.Bultel (École polytechnique) Generalised Jump Functions June 3, 2021 9 / 56



Jumpk,δ: a Generalized Jumpk

Jumpk,δ(x) =

{
‖x‖1 if ‖x‖1 ∈ [0..n − k] ∪ [n − k + δ..n],

−‖x‖1 otherwise.

We also introduce ` = k − δ.
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Consequences of this generalization

Contrarily to what one could think, Jumpk,δ is not equivalent to Jumpδ
followed by OneMax.

On Jump5 with n = 40, when stuck on the local optima, there is only
1 point with strictly better fitness.

On Jump10,5 with n = 40, there are
∑

i=1,2,3,4,5

(10
i

)
= 647.

Intuition

Since crossing the valley is (way) easier on Jumpk,δ, algorithms should
benefit from an exponential speedup.
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Objectives

We focused on several EAs, whose runtimes on Jumpk were determined in
previous research. We study their performance on Jumpk,δ.

We hope to show non-trivial phenomenons. If such phenomenons appear,
they will prove the genuine interest of generalizing the Jump functions.
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Impact on the runtime of algorithms
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1 (1 + 1) EA with Fixed Mutation Rate

2 Fast (1 + 1) EA

3 RLS with Stagnation Detection

4 (1 + 1) EA with Stagnation Detection
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The Simplest Evolutionary Algorithm

Algorithm 1: The (1 + 1) EA with fitness function f : {0, 1}n → R and
static mutation rate p

1 Initialization;
2 x ∈ {0, 1}n ← uniform at random;
3 Optimization;
4 repeat
5 Sample y ∈ {0, 1}n by flipping each bit in x with probability p;
6 if f (y) ≥ f (x) then
7 x ← y

8 until Stopping condition;
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Performance on Jumpk

Result obtained by Doerr et al. in [DLMN17].

(1 + 1) EA on Jumpk

The best possible expected optimization time of the (1 + 1) EA on Jumpk
is asymptotically achieved in p = k

n , and is asymptotically

Θ

((
k

n

)−k ( n

n − k

)n−k
)
.

Furthermore, any deviation from that value leads to exponential loss in
runtime.

It is not obvious whether this generalizes to Jumpk,δ.
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Performance on Jumpk ,δ

General bounds

For all k , `, n ∈ N such that k ≤ n
2 and all p ≤ 1

2 , let Tp(k , `, n) be the
expected optimization time of the (1 + 1) EA with fixed mutation rate p
on the Jumpk,`,n problem. Then

1

2n

n−k∑
i=0

(
n

i

)
1

F (p)
≤ Tp(k , `, n) ≤ 1

F (p)
+

ln(n) + 1

p(1− p)n−1
.

Where

F (p) :=
∑̀
j=0

n−k∑
i=0

(
k

k − `+ i + j

)(
n − k

i

)
pk−`+2i+j(1− p)n−k+`−2i−j

is the probability of jumping over the valley from a local optimum.
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Ideas of proof

Formula for F (p)

The probability of the event ”Jumping over the valley from the local
optimum”.

We must flip at least δ bad bits.

Enumerate all scenarios.

Lower Bound

If the initial searchpoint is before the valley, the runtime stochastically
dominates a variable geometric law of parameter F (p).

Upper Bound

Define fitness layers.

A run of the algorithm is a random walk between layers.

Conclude using the fitness level theorem [Weg01].
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F (p)

F (p) :=
∑̀
j=0

n−k∑
i=0

(
k

k − `+ i + j

)(
n − k

i

)
pk−`+2i+j(1− p)n−k+`−2i−j

plays a crucial role in the phenomena we study.

On Jumpk , F (p) = pk(1− p)(n−k).

Questions that were simple on Jumpk are now highly non-trivial :

What are the maxima of F (p)?
For fixed p, can we have a simple asymptotic equivalent for F (p)?
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Standard regime

The aforementioned bounds are very hard to handle without controlling
k , δ. To continue, we had to define a reasonable regime.

Definition (Standard regime)

Let the standard regime (SR) be the space in which: k = o(n1/3)

Motivation:

Standard regime

In the SR, if furthermore p = o( 1√
n`

), then

F (p) = (1 + o(1))
(k
δ

)
pδ(1− p)n−δ.

Sketch of proof

Direct asymptotic calculations. Nasty but not straightforward : at several
points, combinatorial tricks are required.

H.Bambury, A.Bultel (École polytechnique) Generalised Jump Functions June 3, 2021 20 / 56



Standard regime

Performance in the standard regime

In the SR, if furthermore p = o( 1√
n`

),

Tp(k , δ, n) = (1 + o(1))
1(k

δ

)
pδ(1− p)n−δ

.

Theorem

In the SR, the asymptotic best choice of p is p = δ
n , which gives the

runtime

Tδ/n(k , δ, n) = (1 + o(1))

(
k

δ

)−1 (en
δ

)δ
,

and any deviation from that optimal value results in exponential in δ loss
on the runtime.
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Sketch of proof

Formula for Tp(k , δ, n)

Direct calculations.

Optimality of p = δ/n

Key point: show that F (p) is decreasing on [k+`
n ,+∞[, and notice

k+`
n = o( 1√

n`
) in the SR.

So the optimal p can’t be in [k+`
n ,+∞[.

for all other p, we have the formula for Tp(k , δ, n), it is obviously
minimal on p = δ

n .

Exponential loss for other p

Direct (nasty) calculations
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Discussion

Extends perfectly what was known on Jumpk from [DLMN17], but
only in the SR.

The SR is quite large and covers many interesting settings.

But it is not the only interesting regime! (There is no particular
reason to restrict k, why not considering settings with k = Θ(n)?)

We did not find tools to study simply those other regimes. An
interesting direction for future work!
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1 (1 + 1) EA with Fixed Mutation Rate

2 Fast (1 + 1) EA

3 RLS with Stagnation Detection

4 (1 + 1) EA with Stagnation Detection
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(1 + 1) FEAβ

Introduced in [DLMN17] to improve the simple (1 + 1) EA on Jumpk .

The mutation rate is chosen randomly at each iteration, using a
power-law distribution.

Figure: Plot of a Heavy-tailed power-law distribution.
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Pseudocode

Algorithm 2: The (1 + 1) FEAβ with fitness f : {0, 1}n → R
1 Initialization;
2 x ∈ {0, 1}n ← uniform at random;
3 Optimization;
4 repeat

5 Sample α randomly in [1..n/2] with power-law distribution Dβ
n/2;

6 Sample y ∈ {0, 1}n by flipping each bit in x with probability α
n ;

7 if f (y) ≥ f (x) then
8 x ← y

9 until Stopping condition;
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Performance on Jumpk

The runtime of (1 + 1) FEAβ is a small polynomial above the best
runtime with fixed mutation rate.

Theorem [DLMN17]

Let n ∈ N and β > 1. For all k ∈ [2..n/2], with m > β − 1, the expected
optimization time Tβ(k , n) of the (1 + 1) FEAβ on Jumpk satisfies

Tβ(k, n) = O
(
Cβn/2k

β−0.5Topt(k, n)
)
,

Where Topt(k, n) is the expected runtime of the simple (1 + 1) EA with
the optimal fixed mutation rate p = k

n .
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Performance on Jumpk ,δ

We proved that the result generalizes well.

Theorem

Let n ∈ N and β > 1. For all k, δ in the standard regime, with δ > β − 1,
the expected optimization time Tβ(k , δ, n) of the (1 + 1) FEAβ satisfies

Tβ(k , δ, n) = O
(
Cβn/2δ

β−0.5Tδ/n(k , δ, n)
)
.

Sketch of proof

Exactly like in [DLMN17]. The fitness level theorem, along with a decent
amount of asymptotic computations, directly gives the result.
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1 (1 + 1) EA with Fixed Mutation Rate

2 Fast (1 + 1) EA

3 RLS with Stagnation Detection

4 (1 + 1) EA with Stagnation Detection
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SD-RLS

Introduced earlier this year by A.Rajabi and C.Witt in [RW21].

As an improvement SD-(1 + 1) EA for Jumpk (which we will discuss
later).

For each iteration, instead of standard bit mutation with p = r
n ,

randomized local search of strength r is used. Exactly r bits are
chosen uniformly at random and flipped.

The strength changes along the run, but not randomly:
Initialized as r = 1.
If the algorithm stays stuck in the same layer for ln(R)

(
n
r

)
iterations,

then with probability at least 1− 1
R there is no improvement at

Hamming distance r (R is a control parameter). In this case the
strength is increased to r + 1.
When a strictly better search point is found, return to r = 1.
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SD-RLS∗

Problem: With SD-RLS, termination is not ensured. If the only
improvement is at Hamming distance m from the search point, and missed
during phase m, the algorithms does not terminate.

Solution: Visit the strengths in a different order.

SD-RLS: 1→ 2→ 3→ 4→ . . .

SD-RLS∗: 1→ 2− 1→ 3− 2− 1→ 4− 3− 2− 1→ . . .

The full pseudocode can be found in [RW21].
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Performance on Jumpk

Theorem [RW21]

Let n ∈ N. Let TSD−RLS∗(k , n) be the expected runtime of the SD-RLS∗

on Jumpk , with R ≥ n2+ε for some constant ε > 0. For all k ≥ 2,

TSD−RLS∗(k , n) =

{(n
k

)
(1 + O( k2

n−2k ln(n) )) if k < n/2,

O(2nn ln(n)) if k ≥ n/2.

Better than the (1 + 1) EA with optimal mutation rate by a factor(
en
k

)−k (n
k

)
, which is at least 1/e for small values of k.
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Intuitive runtime analysis

Behind this expected runtime, we can see two quantities:

Number of iterations with strength r < k

+

Number of iterations needed to jump once strength k is reached.

The first are wasted steps, but their number is of the same order as the
other steps. All in all, this sacrifice is worth it.
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Intuitive runtime analysis

But what happens when we move to Jumpk,δ?

Number of iterations with strength r < δ

[Not divided by

(
k

δ

)
]

+

Number of iterations needed to jump once strength δ is reached.

[Divided by

(
k

δ

)
]

If
(k
δ

)
is large enough, the length of the ”wasted steps” is dominant, so the

sacrifice becomes costly (and SD-RLS∗ is slowed down).
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Performance on Jumpk ,δ

Theorem

Let TSD−RLS∗(k, δ, n) be the runtime of the SD-RLS∗ on Jumpk,δ.
Suppose that there exists a constant ε > 0 such that the control
parameter is R ≥ n2+ε. Then if k ≤ n − ω(

√
n) and δ ≥ 3,

TSD−RLS∗(k , δ, n) = (1 + o(1))

ln(R)
δ−1∑
i=1

i∑
j=0

(
n

j

)
+

(
n

δ

)(
k

δ

)−1
 .
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Comparaison to other algorithms

It is easy to see that this runtime is asymptotically larger than the previous
ones. The following lemma puts that difference into perspective.

Theorem

For any integer K , there exists an instance of Jumpk,δ, within the
standard regime, on which

TSD−RLS∗(k, δ, n) = Ω
(
nK−1T 1

n
(k , δ, n)

)
.

H.Bambury, A.Bultel (École polytechnique) Generalised Jump Functions June 3, 2021 36 / 56



1 (1 + 1) EA with Fixed Mutation Rate

2 Fast (1 + 1) EA

3 RLS with Stagnation Detection

4 (1 + 1) EA with Stagnation Detection
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SD-(1 + 1) EA

Introduced in [RW20].

Same principle as SD-RLS, but standard-bit mutation is used instead
of RLS.

The number of iterations needed to increase the mutation rate from
r
n to r+1

n is 2
(
en
r

)r
ln(nR) instead of ln(R)

(n
r

)
.
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Pseudocode

Algorithm 3: The SD-(1 + 1) EA with fitness function f : {0, 1}n → R
and parameter R

1 Initialization;
2 x ∈ {0, 1}n ← uniform at random; u ← 0; r ← 1;
3 Optimization;
4 repeat
5 Sample y ∈ {0, 1}n by flipping each bit in x with probability r

n ;
6 u ← u + 1;
7 if f (y) > f (x) then
8 x ← y ; r ← 1; u ← 0;

9 else if f (y) = f (x) and r = 1 then
10 x ← y ;

11 if u > 2
(
en
r

)r
ln(nR) then

12 r ← min{r + 1, n/2} ; u ← 0;

13 until Stopping condition;
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Performance on Jumpk

The SD-(1 + 1) EA algorithm has a runtime equivalent to the optimal
(1 + 1) EA on Jumpk .

Theorem [RW20]

The expected optimization time TSD(k , n) of the SD-(1 + 1) EA on
Jumpk satisfies

TSD(k, n) = O

((en
k

)k)
.
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Intuitive analysis on Jumpk ,δ

We could conduct the same analysis as for the SD-RLS

Steps with small p, and low probabilty of jumping

+

Step with larger p, for which the probability of jumping is reasonable

If the first steps last too long, the same phenomenon could happen.
Problem: How do we formalise ”small p”, and ”low probabilty of
jumping”.
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Inefficient steps

Definition (Inefficient steps)

Let r ∈ [1..n/2]. We say that step r is inefficient if(
1− F

( r
n

))2( en
r )

r
ln(nR)

= o(1).

Proposition (Bounding the runtime with inefficient steps)

If step r is inefficient, then the expected runtime TSD−OEA(k, δ, n) of the
SD-(1 + 1) EA on Jumpk,δ satisfies

TSD−OEA(k , δ, n) ≥ (1− o(1))2
(en
r

)r
ln(nR).
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An interesting compensation phenomenon

Intuitively, in the SR, the runtime of the SD-(1 + 1) EA should be of
about 1

F( δn )
.

So we should search for any r such that:

Step r is inefficient, i.e. F ( r
n )2
(
en
r

)r
ln(nR) is small.

Its length is not neglectible, i.e. F
(
δ
n

)
2
(
en
r

)r
ln(nR) is big.

Surprisingly enough, by some compensation phenomenon we do not
fully understand, it seems that such r are very difficult to find, and do
not exist in the standard regime.
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An example where SD-(1 + 1) EA suffers exponential loss

We consider the specific instance k = n/4, δ = n/8.

Theorem

On this instance of the Jumpk,δ problem, the runtimes of the
SD-(1 + 1) EA and of the (1 + 1) FEAβ satisfy

TSD−OEA(k , δ, n) = Ω
(
eΘ(n)Tβ(k, δ, n)

)
.

Sketch of proof

Very nasty computations: step 2n
38 is inefficient. Its length is

Ω
(
eΘ(n)Tβ(k , δ, n)

)
.
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Discussion

The SD-(1 + 1) EA is structurally similar to SD-RLS∗, but their
behaviour are very different on Jumpk,δ.

Only the mutation scheme is changed.

Yet, this seems to prevent the SD-(1 + 1) EA from losing too much
time on Jumpk,δ.

This can be seen experimentally! (next section)

We cannot give an explanation for this phenomenon.
We believe that further investigating it could give great
understanding of mutation heuristics in general.

H.Bambury, A.Bultel (École polytechnique) Generalised Jump Functions June 3, 2021 45 / 56



Experiments
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Experiments

Figure: Optimization times of different algorithms on Jumpk,δ with k = δ = 4.

H.Bambury, A.Bultel (École polytechnique) Generalised Jump Functions June 3, 2021 47 / 56



Experiments

Figure: Optimization times of different algorithms on Jumpk,δ with k = 6, δ = 4
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Experiments

Figure: Optimization times of different algorithms on Jumpk,δ with k = 3 ln(n),
δ = k

2
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Experiments

Figure: Optimization times of different algorithms on Jumpk,δ with k = 4n0.3,
δ = k

2 .
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Experiments

Figure: Optimization times of different algorithms on Jumpk,δ with k = n
4 , δ = n

8 .
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Conclusion
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Conclusion: The Jumpk ,δ function

Jumpk,δ(x) =

{
‖x‖1 if ‖x‖1 ∈ [0..n − k] ∪ [n − k + δ..n],

−‖x‖1 otherwise.

A more realistic version of the well-known Jumpk function.
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Conclusion: Performance of Algorithms

Algorithm Jumpk Jumpk,δ in the SR

(1 + 1) EA with optimal MR Θ((kn )−k( n
n−k )n−k) [DLMN17] (1 + o(1))( enδ )δ

(k
δ

)−1

(1 + 1) FEAβ O(Cβn/2k
β−0.5(kn )−k( n

n−k )n−k) [DLMN17] O(Cβn/2δ
β−0.5( enδ )δ

(k
δ

)−1
)

SD-RLS∗
(n
k

)
(1 + O( k2

n−2k ln(n))) [RW21] (1 + o(1))[ln(R)
∑δ−1

i=1

∑i
0

(n
j

)
+
(n
δ

)(k
δ

)−1
]

SD-(1 + 1) EA O(( enk )k) [RW20] Unclear
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Conclusion: Performance of Algorithms

Algorithm Jumpk Jumpk,δ in the SR

(1 + 1) EA with optimal MR Θ((kn )−k( n
n−k )n−k) (1 + o(1))( enδ )δ

(k
δ

)−1

(1 + 1) FEAβ kβ−0.5 δβ−0.5

SD-RLS∗
(
en
k

)k (n
k

)−1
Ω(nK ), ∀K > 0

SD-(1 + 1) EA ≈ Unknown
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